
A Artifact Appendix

A.1 Abstract
This artifact requires machines with x86_64 architecture. At
least 2 logical cores and 2 GB RAM is required for running
the experiments. Since the experiment is resource-consuming,
more cores and RAM settings are recommended. The artifact
has been containerized, so it runs on most Linux-based oper-
ating systems. It has been verified to work on Ubuntu-20.04.

Our paper is about empirically evaluating the reliability en-
hancement brought by kernel exploit stabilization techniques;
the empirical experiment forms the foundation for our paper.

To validate the experiment, one can repeat the experiment
included in the artifact and compare the result with what
we present in the paper. Since our experiment result can be
slightly affected by the underlying hardware, we expect the
result on another machine to be slightly different from what is
in the paper. However, the effect of each exploit stabilization
technique should not change. In other words, if a technique
improves exploit reliability for a specific CVE in the paper,
it should behave the same in repeated experiments. However,
the improvement may be slightly different.

A.2 Artifact check-list (meta-information)
• Binary: Compiled vulnerable Linux kernels are included.

New vulnerable kernels can be compiled as well using
scripts/kernel_builder/build_kernels.py.

• Data set: The artifact requires a dataset of vulnerable Linux
kernels and corresponding exploits. They are included in ex-
ploit_env/CVEs/.

• Run-time environment: The artifact depends on "docker"
software. It requires a Linux-based host OS to build the con-
tainer image. It has been verified to work on Ubuntu-20.04.
The OS inside the container is Ubuntu-18.04. root access on
the host OS is required.

• Execution: The experiment should be run on a machine with-
out other processes running. The existence of other processes
may interfere with the experiment and affect the result.

• Metrics: The metric used in the experiment is the success rate
of exploits.

• Output: The output of the experiment is the success rate of
each exploit. The number of success/failure runs is saved in a
JSON file in the output folder.

• Experiments: To prepare and run the experiment, one needs to
1. clone the artifact repository from https://github.com/
sefcom/KHeaps, 2. build the docker image as instructed in
README.md, and 3. run an evaluation experiment for each
CVE as instructed.
The expected result is included in the paper. We expect slightly
different success rates for each exploit. However, the effect
of each exploit stabilization technique should be the same. In
other words, if a technique improves reliability in the paper,
the behavior should stay the same in repeated experiments with

a slightly different improvement. The same applies to the cases
where techniques hurt exploit reliability.

• How much disk space required (approximately)?: We ex-
pect the whole experiment to take about 20GB disk space after
disabling logging (the "-nl" option in "vuln_tester.py").

• How much time is needed to prepare workflow (approxi-
mately)?: We containerized the whole experiment. It takes
about 10-15 minutes to build a disk image for the VM and
docker image for the evaluation.

• How much time is needed to complete experiments (approx-
imately)?: To complete the 2CPU+2GB RAM experiment
(each VM configured with 2 virtual CPU and 2GB RAM), it
requires 1680 CPU days. The time needed can be reduced by
increasing the number of CPUs. For example, it can be finished
in 42 days with a 40-core machine.

• Publicly available (explicitly provide evolving version refer-
ence)?: The artifact is publicly available at https://github.
com/sefcom/KHeaps

• Code licenses (if publicly available)?: MIT license.

• Data licenses (if publicly available)?: MIT license.

• Archived (explicitly provide DOI or sta-
ble reference)?: Stable reference on GitHub:
https://github.com/sefcom/KHeaps/tree/
22b35da5f9f259f5cc8f349da9f791d9428295e4.

A.3 Description
A.3.1 How to access

Clone git repository from https://github.com/sefcom/KHeaps/
tree/22b35da5f9f259f5cc8f349da9f791d9428295e4.

A.3.2 Hardware dependencies

N/A.

A.3.3 Software dependencies

The experiment requires a Linux-based OS to build. Ubuntu-20.04
is preferred.

One of the experiments requires nested-kvm parameter in kvm-
intel kernel module. One can check whether it is enabled by checking
/sys/module/kvm_intel/parameters/nested. If it is enabled, the pseudo
file should return "Y".

The experiment depends on "docker" software.

A.3.4 Data sets

The dataset is included in the public KHeaps repository. It consists
of two parts: 1. vulnerable kernels are pre-compiled and included in
the repository. 2. kernel exploits are included in "poc" folders.

A.3.5 Models

N/A

https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4
https://github.com/sefcom/KHeaps/tree/22b35da5f9f259f5cc8f349da9f791d9428295e4


A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
Use the following command to build the docker image.

1. git clone https://github.com/sefcom/KHeaps
2. cd KHeaps
3. cd scripts/create-image/ && ./create-image.sh && cd ../..
4. docker build -t kheap .
The above process takes about 10 minutes to finish.
At this stage, a docker image called "kheap" should be created.

One can verify this by making sure its existence in the output of
"docker images".

A.5 Experiment workflow
The experiment aims to evaluate the success rates of exploits against
vulnerable kernels. For each CVE, it compiles all the corresponding
exploits first and then launches VMs with the vulnerable kernel. It
then copies exploits into the VMs using ssh and runs exploits inside
the VMs until the VMs crash. The VM monitor will extract the crash
logs and determine whether the exploits succeed or not. We regard
an exploit as successful if the VM crashes at an attacker-controlled
program counter, which demonstrates the control flow hijacking
capability of the exploit.

A.6 Evaluation and expected results
Main claim: Exploits equipped with the combo technique
outperforms realworld exploits in terms of reliability. This
can be verified by running realworld exploits and combo
exploits and comparing their success rates. In our evaluation,
the success rates of realworld and combo exploits are 54.30%
and 91.15% (67.86% improvement). In repeated experiments,
we expect combo exploits to have at least 50% improvement
over realworld exploits.

Key results:

• Defragmentation improves reliability for OOB exploits.
We expect exploits equipped with Defragmentation tech-
nique to have a significantly higher success rate com-
pared with baseline exploits. This can be verified by
running baseline exploits and exploits equipped with
Defragmentation technique.

• Defragmentation may hurt reliability for UAF or DF
exploits. We expect that Defragmentation does not sig-
nificantly improve reliability for UAF and DF exploits
and significantly hurts the reliability for some of them.
For example, CVE-2017-2636.

• Heavy workload hurts exploit reliability, but exploits
can still achieve high success rates. This can be verified
by running exploits in both idle and busy settings. One
should observe exploit success rate degradation in busy
settings and that more than half exploits equipped with

Multi-Process Heap Spray can achieve more than 90%
success rates.

• Multi-Process Heap Spray generally outperforms Single-
Thread Heap Spray. This can be verified by running
both Multi-Process Heap Spray and Single-Thread Heap
Spray exploits. We expect Multi-Process Heap Spray
to outperform Single-Thread Heap Spray in all settings
with one exception: CVE-2017-6074 in idle settings,
potentially also in busy settings.

A.7 Experiment customization
To evaluate exploits for a new CVE, one needs to add a new
folder in "CVEs" folder and specify its maximum runtime in
"setup.json".

To limit the evaluation to some specific exploits, one can
add filters in "make_pocs" function in "vuln_tester.py" script.

A.8 Notes
N/A.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


