
G Artifact Appendix

G.1 Abstract

The artifacts consist of various cache-timing experiments. The
initial experiments help to understand the non-inclusive LLC
structure and DDIO-based accesses to it. The later experi-
ments allow reverse-engineering the underlying mechanisms,
exploiting the findings and performance analysis.

As our work explores the use of FPGAs for cache
side-channel attacks, the artifacts require an FPGA ac-
celeration card. Though we used our local setup with
Intel Programmable Accelerator Card (PAC), we also
tested the artifacts with remote access to Intel Labs (IL)
Academic Compute Environment (ACE) (https://wiki.
intel-research.net/FPGA.html).

For people who have neither, we provide detailed docu-
mentation for each experiment, which provides the expected
execution output and the inferences we draw from them. No-
tably, Figures 3, 4, 7, 8 and 9 were produced based on
experiments like these.

G.2 Artifact check-list (meta-information)
• Algorithm: SW+HW Combined Cache Attacks, Eviction Set

Construction, Reverse-Engineering DDIO
• Compilation: make, gcc (tested versions are 7.5.0 and 4.8.5)
• Binary: For software: binaries are not provided. Not needed

as compilation is straightforward. For hardware: A bitstream
file synthesised for Intel Arria 10 PAC is provided. This should
save quite some time as synthesis may take several hours.
Instructions on how to synthesise for other PACs are available.

• Run-time environment: Ubuntu 18.04.5 LTS and CentOS
Linux 7.7.1908 The basic experiments do not require any
root access. However, experiments on non-default system con-
figurations and reverse engineering require sudo. We included
these experiments as they were requested by our reviewers.

• Hardware: Intel PAC (Programmable Accelerator Card)
• Execution: Compilation and execution of binaries on com-

mand line.
• Security, privacy, and ethical concerns: Demonstrates cache

attacks allowing to steal secrets of victims sharing the same
computer as attacker.

• Metrics: Cache access timings, execution time, accuracy.
• Output: Console output with exact numerical results.
• Experiments: The repository is a collection of various experi-

ments, such as eviction set construction, cache access timings,
eviction candidate determination, effect of shared access over
the eviction candidate, evidence for DDIO+ region, etc. A
separate documentation file is provided for each experiment.

• How much disk space required: The repository is 13 MB.
When de-compressed, the bitstream file reaches has a size of
133 MB. All in all, it is less than 150 MB.

• How much time is needed to prepare workflow: Almost no
additional preparation is needed if you already have access to
an Intel PAC0based FPGA-accelerated computation server.
Otherwise, an access request to Intel Labs Academic Compute

Environment (https://wiki.intel-research.net/FPGA.
html) and getting a response might take at least a day.

• How much time is needed to complete experiments: It can
take several hours.
Suppose evaluators do not have access to an Intel PAC based
FPGA accelerated computation server. In that case, they can
go through the documentation files and observe the expected
execution results and the inferences drawn from them. This
option would take an hour.

• Publicly available: https://github.com/
KULeuven-COSIC/Double-Trouble

• Code licenses: MIT License
• Archived: https://github.com/KULeuven-COSIC/
Double-Trouble/tree/ArtifactsAvailable

G.3 Description
The repository contains a set of experiments, listed in the following
table along with the relevant section of the paper.

Experiment Figure/Section

Basic Functionality
Shared Access Figure 4d
CPU Read Figure 4f
Secondary Write Figure 4e
CPU Write Figure 4c
Cache Timing Histogram Appendix A
Eviction Candidate Section 3.2.2
DDIO Replacement Policy Appendix C
Eviction with Reduced EvSet Section 6.2
EvSet Const Section 8.1.1
Reverse Engineering of DDIO Section 5

The first experiment is provided as a warm-up to the basic API
usage, the building of the attacker-victim framework, eviction set
creation, and cache-timing measurements. For each experiment, a
dedicated documentation file is provided. This file explains the
conducted experiment, how to execute it, and the expected results.

G.3.1 How to access

The artifacts are published on GitHub. The version, improved with
evaluators’ suggestions, is tagged as ‘ArtifactsAvailable’.

The Stable URL is: https://github.com/KULeuven-COSIC/
Double-Trouble/tree/ArtifactsAvailable

We wish to keep the repository solely for the artifacts of the paper,
so the most recent commit should always apply for this paper.

G.3.2 Hardware dependencies

Our work requires an FPGA acceleration card. Specifically, we tested
with the following Intel PACs (Programmable Accelerator Cards):

• Intel Arria 10 PAC
• Intel Stratix 10 PAC

One can either have a local setup that employs an Intel PAC
or work with remote access to such a platform. We did both. For
the latter, Intel Labs (IL) Academic Compute Environment (ACE)

https://wiki.intel-research.net/FPGA.html
https://wiki.intel-research.net/FPGA.html
https://wiki.intel-research.net/FPGA.html
https://wiki.intel-research.net/FPGA.html
https://github.com/KULeuven-COSIC/Double-Trouble
https://github.com/KULeuven-COSIC/Double-Trouble
https://github.com/KULeuven-COSIC/Double-Trouble/tree/ArtifactsAvailable
https://github.com/KULeuven-COSIC/Double-Trouble/tree/ArtifactsAvailable
https://github.com/KULeuven-COSIC/Double-Trouble/tree/ArtifactsAvailable
https://github.com/KULeuven-COSIC/Double-Trouble/tree/ArtifactsAvailable
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/arria-10-gx.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html


(https://wiki.intel-research.net/FPGA.html) provides var-
ious remotely accessible platforms.

For people who do not have access to an FPGA accelerated plat-
form but are still interested in our findings, we provided detailed
documentation on our repository. The documentation includes a sep-
arate file for each experiment, where we provide an example output
of the execution for proving the claims we made out of them.

G.3.3 Software dependencies

On a platform with Intel PAC, we can assume that the corresponding
Intel OPAE SDK (https://github.com/OPAE) is available.

The compilation is straightforward with Makefiles. We tested
on two different setups with different gcc versions:

• On our local setup: Ubuntu 18.04.5 LTS with gcc 7.5.0
• On Intel Labs ACE: CentOS Linux 7.7.1908 with gcc 4.8.5
A few experiments require installing additional libraries. Instruc-

tions to install them are available for each repository, though they
need root privileges on the machine.

• intel-cmt-cat
https://github.com/intel/intel-cmt-cat is used for
the experiments in Section 5. This library allows to fix the
LLC ways used by a CPU core.

• intel-msr-tools
https://github.com/intel/msr-tools is used for chang-
ing the default cache configuration, with the purpose of giving
the FPGA (or DDIO in general) broader cache access. Experi-
menting with these non-default configurations was a suggestion
by the reviewers.

G.3.4 Security, privacy, and ethical concerns

Our work demonstrates a timing-based cache side-channel frame-
work, aiming for the disclosure of our security and privacy concerns
associated with the underlying platforms.

G.4 Installation
Cloning the repository is adequate for obtaining the source files.

G.5 Experiment workflow
All experiments consist of two steps; compilation with a provided
Makefile and execution of the generated binary. Depending on the
platform, there can be various customizations, e.g., pinning processes
to specific CPU cores.

Each experiment in the repository comes with a separate docu-
mentation file. These documents provide experiment-specific com-
pilation (with Makefile targets) and execution commands, besides
the experiment explanation and expected outputs.

G.6 Evaluation and expected results
The evaluation is divided into multiple experiments. The initial
experiments help understand the non-inclusive LLC structure and
its DDIO-based access. The later experiments entail:

• reverse engineering the underlying mechanisms,
• demonstrating the findings, and
• analyzing the performance.

G.6.1 Figure 4

We have four experiments respectively for the observations provided
in Figures 4c, 4d, 4e and 4f. The expected results are timing mea-
surements that support the claimed observations in Figures 4 and
Section 3.2.

G.6.2 Cache Timing Histogram

This experiment measures the timings for cache line accesses from
various levels in the cache hierarchy and constructs a histogram that
helps to distinguish accesses by their latency. The expected result
is a histogram similar to Figure 9 given in Appendix A, though the
timings can vary on different platforms.

G.6.3 Eviction Candiate

This experiment determines whether DDIO reads and writes are
recorded by the cache replacement policy, i.e., whether they change
the eviction candidate. The expected results consist of cache timing
measurements prooving the claims made in Section 3.2.2 including
Figure 3.

G.6.4 DDIO Replacement Policy

This experiment performs various access patterns with DDIO lines,
checks the cache contents after these accesses, and compares them
with the expected contents for different replacement policies. The
expected result is the re-construction of Table 10.

G.6.5 Reduced Eviction

This experiment implements the eviction with the reduced-eviction
approach explained in Section 6.2. It creates random bits, indicating
whether the victim accesses the target address or not. The attacker
monitors the victim’s activity and determines whether the victim has
accessed the target. The expected results are the measures indicating
the success of eviction with a reduced eviction set.

G.6.6 Eviction Set Construction

This experiment is used to evaluate the eviction set construction
performance for various configurations, which are:

• Non-default DDIO way settings
• Huge or small pages
• Different levels of stress
• Options of congruence checks integrated into the eviction set

construction

The expected results comprise a debug log of FPGAs eviction
set construction e.g., how many guesses were needed for every con-
gruent address, total construction time, and failed attempts. These
results are used in Section 8.1.1 and to construct Figure 8.

G.6.7 Reverse Engineering the DDIO and DDIO+ re-
gions

This experiment is used to reproduce the findings in Section 5. The
expected results indicate the ways available to DDIO and DDIO+

allocations, hence allowing to redraw Figure 7.

https://wiki.intel-research.net/FPGA.html
https://github.com/OPAE
https://github.com/intel/intel-cmt-cat
https://github.com/intel/msr-tools


G.7 Experiment customization
The experiments offer limited customizability and interactions, in-
cluding picking the associations of processes to specific CPUs.

Specifically for the Eviction Set Construction experiment, various
measurements, indicated in Appendix G.6.6, can be perfomed by
customizing the command line arguments to the binary.

G.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Figure 4
	Cache Timing Histogram
	Eviction Candiate
	DDIO Replacement Policy
	Reduced Eviction
	Eviction Set Construction
	Reverse Engineering the DDIO and DDIO+ regions

	Experiment customization
	Version


