A Artifact Appendix
A.1 Abstract

In this artifact, we will build our Cheetah framework, and to
evaluate three neural networks, i.e,. ResNet50, DenseNet121,
and SqueezeNet in a secure two-party computation manner.
Also, we build the counterpart (i.e., SCI-HE from the CrypT-
Flow2’s paper) for comparison. Specifically, this artifact can
reproduce the performance numbers in Table 8, and Fig 10 in
our paper.

To build our programs, we require a C++ toolchain in-
cluding cmake (version>=3.13), C++ compiler that sup-
ports C++17 (e.g., g++>=8.0), make and git. Also we require
OpenSSL to be installed. To achieve the best performance, or
to reproduce the performance numbers in our paper, we expect
the AVX512 instructions (i.e., avk512dq and avx512ifma) are
enabled.

For each neural network, we will generate two executables,
one for Cheetah and the other for CrypTFlow?2’s counterpart.
Running the executable, it will log the running time and com-
munication cost for evaluating the neural network securely.
All the logs are re-directed to file.

A.2 Artifact check-list (meta-information)

* Algorithm:
Our artifact includes all the proposed algorithms in our pa-
per. Specially, the linear protocols (Fig2, Fig4, and Fig 11) are
placed in include/gemini/cheetah/ and the non-linear pro-
tocols (Fig8 and Fig 9) are placed in SCI/src/Millionaire/
and SCI/src/Nonlinear/.

* Compilation:
For compilation, we provide two scripts
scripts/build-deps.sh and scripts/build.sh which
builds the dependencies and our implementation, respectively.

* Binary:
Using our scripts, the generated binaries are placed in the
build/bin/ directory, including 6 demo.

— sqgnet-cheetah Run inference on SqueezeNet using
Cheetah.

— resnet50-cheetah Run inference on ResNet50 using
Cheetah.

— densenetl21-cheetah Run inference on DenseNet121
using Cheetah.

— sqgnet-SCI_HE Run inference on SqueezeNet using SCI-
HE

— resnet50-SCI_HE Run inference on SqueezeNet using
SCI-HE.

— densenet121-SCI_HE Run inference on SqueezeNet
using SCI-HE.

* Model:

We provide three pretrained neural networks:

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

é;usenl éiUSEnIX é;usenlx
@ HssocaTion ASSOCIATION ASSOCIATION

AVAILABLE REPRODUCED

— pretrained/sgnet_model_scalel2.inp,
— pretrained/resnet50_model_scalel2.inp,

— pretrained/densenet121l_model_scalel2.inp.

¢ Run-time environment: >=2.70 GHz CPU with more than
16GB RAM. A Linux-like OS is preferred. For instance,
our timing results can be reproduced using Alibaba Cloud
ecs.c7.2xlarge instances or Amazon AWS c6g.2xlarge in-
stances.
If to execute our artifacts on a single machine (i.e., using two
processes to mimic two remote machines), we recommend the
CPU supports more than 8 cores.

* Execution:
We provide two scripts scripts/run-server.sh and
scripts/run-client.sh to execute our demo. For exam-
ple, to run an inference on SqueezeNet using Cheetah. We
can run bash scripts/run-server.sh cheetah sgnet
on one terminal and run bash scripts/run-client.sh
cheetah sgnet on other terminal.
Replacing the first argument cheetah with SCI_HE to run
CrypTFlow?2’s counterpart.

* Metrics:
We measure the total running time and communication cost
for one inference. The one-time setup including base-ot and
key-generation are NOT included. Our programs will log the
running time (in seconds) and communication (in megabytes)
for each layer in the neural network.

¢ Output:
Our programs will generate a detailed log for each layer
including the running time and communication. Also,
on the client side, it will output the prediction label for
the input image. For example, after running the script
scripts/run-client.sh cheetah sqnet, the generated
log file cheetah-sgnet_server.log is placed under the cur-
rent directory.

* Experiments:
Our artifact reproduces some empirical results in our paper,
including the Cheetah and SCI-HE performance numbers in
Table 8, and the top-10 values in the final prediction vectors in
Figure 10.

* How much disk space required (approximately)?:
About 500 megabytes, including the source codes, dependen-
cies, built objects and pretrained models.

¢ How much time is needed to prepare workflow (approxi-
mately)?:
It took us less than 10 minutes to build all the programs. Note
that to build our programs, we need to fetch dependencies from
Github.

¢ How much time is needed to complete experiments (ap-
proximately)?:
It might take about 15-30 minutes to run all the demos.
The three Cheetah-related demos takes less than 4 minutes to
execute on LAN and AVXS512 enabled. While the three SCI-
HE -related demos takes more than 10 minutes to execute on
LAN and AVX512 enabled.
If AVX512 is not available, the execution time might be twice.

* Publicly available (explicitly provide evolving version ref-
erence)?:

Our source codes are available in https://github.
com/Alibaba-Gemini-Lab/OpenCheetah, commit hash
a%362e.

A.3 Description
A.3.1 How to access

Our source codes are available in https://github.com/
Alibaba-Gemini-Lab/OpenCheetah, commit hash a9b362e.

A.3.2 Hardware dependencies

To reproduce the performance numbers in our paper, we require the
CPU to support AVX512, ie., avxdq and avx512ifma instructions.
Nevertheless, our programs can run without AVX512 support.

A.3.3 Software dependencies

Our programs depend on the following open-sourced libraries. Note
that we provide a script script/build-deps. sh to fetch and build
these dependencies automatically.

* emp-tool https://github.com/emp-toolkit/emp-tool

e emp-ot https://github.com/emp-toolkit/emp-ot

Eigen https://github.com/libigl/eigen

e SEAL https://github.com/microsoft/SEAL

zstd https://github.com/facebook/zstd

hexl https://github.com/intel/hexl/tree/1.2.2

A.3.4 Data sets

‘N/IA

A.3.5 Models
We provide three pretrained neural networks:
* pretrained/sqnet_model_scalel2.inp,

* pretrained/resnet50_model_scalel2.inp,
* pretrained/densenet121_model_scalel2.inp.
These pretrained model are generated/taken from CrypT-

Flow2’s code base https://github.com/mpc-msri/EzPC/tree/
master/Athos/Networks.

A.3.6 Security, privacy, and ethical concerns

‘N/A

A Y
Athos EzPC
Compiler Compiler

resnet50.py main_resnet50.cpp

Y
resnet50-SCI_HE
A Secure Correct Inference (SCI) ——»

—_

main_resnet50.cop renset50-Cheetah

Y
-
8=
renset50_input_scalel12.inp

renset50_model_scale12.inp

—— predicted label Client
Server

Figure 1: Workflow of Cheetah

A.4 Installation

1. Install the following requirements manuallly on your OS:

(a) git We use git command to fetch all the source codes
from Github.

(b) cmake version >= 3.13. We use the cmake build-system
to manage the source codes.

(c) make To run the generated build scripts from cmake, we
use the make command.

(d) bash Helper scripts are written in bash syntax.

(e) openssl. The openssl library should be installed in a
‘standard’ path (e.g., /usr/include/) so that cmake can
find out where it is.

(f) C++ compilere.g. g++ (on Linux) or clang (on MacOS).
We require the C++ compiler to support at least C++-17.
For example, g++-8 and clang-13.

2. Fetch the Cheetah repo from Github via git clone
git@github.com:Alibaba-Gemini-Lab/OpenCheetah.git
Then go into the OpenCheetah/ directory, and checkout git
checkout a9b362e the specific version.

3. Build the dependencies via bash scripts/build-deps.sh
This step will fetch many libraries from Github and build them,
which might take a while to run.

4. Build the executables via bash scripts/build.sh This step
will build 6 executables placed in the build/bin/ directory.

A.5 Experiment workflow

From the high-level view, the current Cheetah implementation is
an alternative implementation of the Secure and Correct Inference
(SCI) Library [3]. We keep using the same interface of SCI so that
we can leverage the Athos compiler [1] and the EzPC compiler [2] to
convert a Python script that defines the structure of a neural network
using TensorFlow to a secure two party computation C++ program
that evaluates that neural work. A such compilation takes place once

https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
https://github.com/Alibaba-Gemini-Lab/OpenCheetah
 https://github.com/emp-toolkit/emp-tool
 https://github.com/emp-toolkit/emp-ot
 https://github.com/libigl/eigen
 https://github.com/microsoft/SEAL
 https://github.com/facebook/zstd
 https://github.com/intel/hexl/tree/1.2.2
https://github.com/mpc-msri/EzPC/tree/master/Athos/Networks
https://github.com/mpc-msri/EzPC/tree/master/Athos/Networks

for one neural network, and no trained model or input is needed
during the compilation. In this artifact, we place the pre-compiled
neural networks under the folder networks/.

For the secure inference, the server and the client run the compiled
program with their private input. Also, input of server (i.e., pretrained
model) and input of client (i.e., image) are also pre-processed using
Athos’s script. For example, floating point values are pre-processed
to fixed-point values. The program will read the input from stdin.
Also the program requires many parameters to run

* ‘r’ The role of player, ‘r=1" indicates server and ‘r=2° indicates
client

* ‘k’ The fixed-point precision.

* ‘ip’ The IP address of the server.

* ‘p’ The port for the client’s program to connect.

* ‘nt’ The number of threads. We can set at most 4 threads.

 ‘ell’ The bit length for the secret sharing, e.g,. we use ‘ell=37"
in our paper.

We provide helper scripts in scripts/run-client.sh and
scripts/run-server.sh which hide most of the details for this
parameters setting.

A.6 Evaluation and expected results

In our paper, we majorly claim two points.

1. Cheetah can evaluate deep neural network in minutes. For
instance, in Table 8, we claim that Cheetah can evaluate
ResNet50 within 1.5 minutes and transfer about 2.3 GB mes-
sages over LAN.

2. Our one-bit approximate truncation is effective for deep neural
network inference. In § 6.5, we state that Cheetah can output
almost the same prediction vector as SCI (which is bit-wise
equivalent to the plaintext fixed-point computation).

By running our artifacts, we can reproduce the results in Table 8 and
Figure 10.

To run our artifacts locally, execute as follows (take ResNet50 as
the example)

1. Run bash scripts/run-server.sh cheetah resnet50
on one terminal.

2. Run bash scripts/run-client.sh cheetah resnet50
on the other terminal.

By replacing cheetah as SCI_HE, it will run the SCI-HE’s coun-
terpart. The other pretrained models, i.e., SqueezeNet (sqnet),
DenseNet121 (densenet121) can be used by switching the second
parameter.

After the computation is done, a log file is generated under the cur-
rent directory, e.g., cheetah-resnet50_client.log on the client’s
machine and cheetah-resnet50_server.log on the server’s ma-
chine. These files contain a detailed log for each layer of the neu-
ral network which can be used to validate the numbers in Ta-
ble 8 and Figure 10 in our paper. The total computation time

can be found in client’s log file. For example in the 273-th line
of cheetah-resnet50_client.log, it might record Total time
taken = 80719 milliseconds. The total communication cost
can be found in server’s log file. For example in the 276-th line
of cheetah-resnet50_server.log, it might record Total comm
(sent+received) = 2289.33 MiB. The computation time might
vary within 10% while the communication cost barely change much.

In addtion, we also print out the top-10 values in the final pre-
diction vector to the last three lines in the client’s log file. For our
ResNet50 example, it will record

top-10 values from ResNet50

[13.0649084,11.7061750,10.7425666,10.4339929,9.8536843,---

predicted label=249
In the SCI_HE-resnet50_client.log (generated by running
the resnet50-SCI_HE demo), it records
top-10 values from ResNet50

[13.0845959,11.7224159,10.7543676,10.4407995,9.8753999, ---

predicted label=249
This reproduces the numbers in Figure 10 of our paper.

A.7 Experiment customization

If running on two remote machines, we first edit the SEVER_IP
and SERVER_PORT variables defined in scripts/common.sh. The
scripts/throttle.sh script can be used to manipulate the band-
width (i.e., speed and ping latency). We can used this script to mimic
the WAN/LAN setting within lab enviorments, e.g., running program
within one machine. For example, using
sudo scripts/throttle.sh wan

on a Linux OS which will limit the local-loop interface to about
400Mbps bandwidth and 40ms ping latency. You can check the ping
latency by just ping 127.0.0.1. The bandwidth can be check using
extra iperf command.

A.8 Notes

To reproduce the timing numbers in our paper, we require the
AVX512 instructions (i.e., avx512dq and avx512ifma) are supported.
If AVXS512 is not available, the timing numbers (both for Cheetah
and SCI-HE) will be increased about 2.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

References

[1] Athos. https://github.com/mpc-msri/EzPC/tree/
master/Athos, June 2021.

[2] EzPC - a language for secure machine learning. https:
//github.com/mpc-msri/EzPC/tree/master/EzPC, June
2021.

[3] Secure and correct inference (SCI) library. https://github.
com/mpc-msri/EzPC/tree/master/SCI, June 2021.

https://github.com/mpc-msri/EzPC/tree/master/Athos
https://github.com/mpc-msri/EzPC/tree/master/Athos
https://github.com/mpc-msri/EzPC/tree/master/EzPC
https://github.com/mpc-msri/EzPC/tree/master/EzPC
https://github.com/mpc-msri/EzPC/tree/master/SCI
https://github.com/mpc-msri/EzPC/tree/master/SCI

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

