
A Artifact Appendix

A.1 Abstract
Our artifacts include the source code of all components of our
Kage implementation, including the LLVM-based [36] com-
piler, the FreeRTOS-based [6] embedded OS, the microbench-
marks, the macrobenchmark, the binary code scanner, the cor-
responding libraries, and our scripts to find stitchable gadgets.
Our hardware requirements include a host Linux machine
and an STM32L475 Discovery board [43]. Our software re-
quirements include Linux, a C/C++ compiler (e.g., Clang,
gcc) and associated tools for compiling Clang and LLVM,
the OpenSTM32 System Workbench IDE, Python 3, and the
pyelftools library. We provide automated evaluation scripts
to generate the performance results, code size results, and
most of the security evaluation results included in the paper.
Specifically, the performance results produced by these arti-
facts correspond to the results found in Tables 2, 3, 4, 5, 6,
and 7 of the paper. Due to minor bug fixes and code structure
adjustments, the artifact results will vary slightly from the
results presented in the paper, but the key results and the main
claims of the paper remain valid.

A.2 Artifact check-list (meta-information)
• Program: CoreMark [28] (included), Microbenchmarks

(included).
• Compilation: Our LLVM-based compiler.
• Transformations: Our compiler passes (shadow stack, store

hardening, and CFI).
• Run-time environment: Fedora 35.
• Hardware: STM32L475 Discovery board.
• Metrics: CoreMark: Iter/s; microbenchmark: cycles; code

size: bytes; security: gadgets.
• Output: Serial output containing the numerical results.
• Experiments: Execute the automated evaluation scripts.
• How much disk space required (approximately)?: 5GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Two hours.
• How much time is needed to complete experiments (approx-

imately)?: 20 minutes.
• Publicly available?: Yes.
• Code licenses: Kage, LLVM compiler, CoreMark: Apache

License 2.0; Newlib: GNU General Public License 2; AWS
FreeRTOS: MIT License.

• Archived?: https://github.com/URSec/Kage commit
#195d489

A.3 Description
A.3.1 How to access

The source code of Kage is publicly available as a GitHub
repository: https://github.com/URSec/Kage.

A.3.2 Hardware dependencies

An STM32L475 Discovery board is required. Other STM32
development boards may work but are untested. A Linux x86
host machine is also required in order to build and flash the
benchmarks to the board and to read the experimental results.

A.3.3 Software dependencies

We require the host machine to run a Linux distribution. We
evaluated Kage using a host machine running the rolling
release of Arch Linux, updated in June 2021. We have also
tested Kage on Fedora 35.

Our build script uses the manufacturer-provided IDE
to build the binaries. Therefore, we require the Open-
STM32 System Workbench IDE to be installed on
the host machine. The IDE is publicly available at
https://www.openstm32.org/HomePage. Note that users are
required to register for a free web account to download the
IDE suite.

Our binary code scanner requires Python 3 and the
pyelftools library.

Finally, our automated evaluation script requires Python
3, the colorama Python library, and the pyserial Python
library.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

A.4.1 Setting Up Kage on a Local Machine

We provide a detailed guide to install the dependencies and
to set up Kage in the readme.md document of our GitHub
repository.5 As discussed in Section A.3.2, we require an
STM32L475 Discovery board to run the compiled ARMv7-
M binaries.

A.5 Experiment workflow

We provide a detailed guide to run the experiments in the
readme.md document of our GitHub repository.

5https://github.com/URSec/Kage



A.6 Evaluation and expected results
A.6.1 Key Results in the Paper

There are three main claims in our paper. First, Kage incurs
only minor performance overhead in the macrobenchmark,
CoreMark [28], even though some of its components show a
more significant overhead in microbenchmarks. Second, Kage
incurs acceptable code size overhead. Third, Kage eliminates
stitchable code-reuse gadgets.

For the first claim, the key result is that Kage incurs 5.2%
mean performance overhead compared to the baseline FreeR-
TOS [6] in CoreMark. Table 3 in the paper lists the detailed
CoreMark results. For the performance overhead of Kage’s
components, Table 5 and Table 6 in the paper list the mi-
crobenchmark results.

For the second claim, the key result is that Kage incurs
49.8% code size overhead compared to the baseline FreeR-
TOS and 14.2% code size overhead compared to FreeRTOS
with MPU enabled, when comparing the CoreMark binaries
that use three threads. Table 4 in the paper lists the detailed
code size results.

For the third claim, the key result is that, for the CoreMark
binaries that use three threads, Kage significantly reduces
the number of reachable code-reuse gadgets and eliminates
stitchable gadgets. Table 7 in the paper lists the detailed code-
reuse gadget results for the security evaluation.

A.6.2 Reproducing the Results

As Section A.5 states, we provide a detailed guide to run
the automated scripts in the readme.md document of our
repository. This document includes detailed steps to build our
toolchain, generate the performance and code size results, and
generate the security evaluation results.

Because we discovered and fixed additional minor bugs
in our workflow after we submitted the paper, and because
we adjusted the source code to enable automated evaluation,
the artifact results will include minor differences from the
original results included in the paper. For the microbench-
marks, the results may include variations up to 25 cycles. For
the performance evaluation of CoreMark, the results may in-
clude variation up to 0.05 Iter/s. For the code size evaluation
of CoreMark, the code size of the untrusted code includes
a difference of 16 bytes. Finally, for the security evaluation,
the number of reachable gadgets includes a difference of one
gadget. These differences do not significantly impact the key
results and claims of the paper.

We note that our automated evaluation scripts produce a
larger set of performance metrics than the set we included in
the paper. For example, Table 6 in the paper shows the mi-
crobenchmark results for FreeRTOS, FreeRTOS with MPU en-
abled, and Kage. Our evaluation script, run-benchmarks.py,
also shows the microbenchmark results for Kage’s OS mech-
anisms. Similarly, for code size, the paper only includes the

results of the CoreMark binaries that use three threads while
the script also shows the code size results for the microbench-
mark binaries as well as other binaries of CoreMark that use
one or two threads.

Finally, while our scripts generate most of the results au-
tomatically, our security evaluation script, run-gadget.py,
cannot automatically generate the number of stitchable gad-
gets because the process requires manual inspection. Section
6.2 of our paper explains how we analyze the reachable gad-
gets to determine if they are stitchable.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


