A Artifact Appendix

A.1 Abstract

Our artifact contains the source files, scripts, and other neces-
sary files for reproducing the results described in the paper.
It consists of the two compilers (vWasm and rWasm), the se-
mantics fuzzer, as well as benchmarking scripts. To run these,
one needs a Linux x86-64 machine, or a Docker environment
capable of running it. Since one of the two compilers, namely
vWasm, contains a machine-checked proof, the artifact also
contains instructions to re-verify that all parts of the proof are
indeed accepted by F*.

A.2 Artifact check-list (meta-information)

* Program:

— vWasm: a formally-verified provably-safe sandbox-
ing compiler, built in F*

— rWasm: a high-performance informally-verified
provably-safe sandboxing compiler

— wasm-semantics-fuzzer: a tool for providing
greater assurance in the semantic correctness of
any Wasm implementation

e Compilation: vWasm requires F*, OCaml, nasm, etc.;
the rest require a Rust installation. We include a Docker
image with all requirements in the artifact.

e Data set: Benchmarks and micro-benchmarks
are included in the artifact. See benchmarks/,

microbenchmark-compare-read-arr/ and
image-conversion-scenario/ in the main reposi-
tory.

* Run-time environment: Our artifact was developed
and tested on recent Linux-based systems. We include a
Docker image with all requirements.

* Hardware: Requires an x86-64 machine. We tested on
an AMD Ryzen 3700x (64GB memory) and on an Intel
19-9900K (128GB memory). While almost everything
should run on a machine with less memory, we recom-
mend 32GB or higher to allow parallelism to save user
time in some of the memory-intensive steps.

e Output: We provide more detail in the artifact
README . md files, but in short, building vWasm will verify
and compile the vWasm compiler, building rWasm will
compile the rWasm compiler, building wasm-semantics-
fuzzer will build the fuzzer, and running the benchmarks
will use the compilers to run the experiments described
in the paper.

ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
zusenix susenix susenix

ASSOCIATION ASSOCIATION @ Hssociation

ARTIFACT

AVAILABLE

REPRODUCED

* How much disk space required (approximately)?:
Approximately 5 GB for the Docker image; the rest
of the files are negligible in size. When running bench-
marks, space usage can increase a lot more, and thus it
is best to have free space on the order of approximately
100 GB.

¢ How much time is needed to prepare workflow (ap-
proximately)?: The provided Docker image contains
all requirements for the two compilers, and loading it
from the exported image should only take a minute or
two. Building the Docker from scratch takes significantly
longer (an hour or two). The other Wasm runtimes being
benchmarked against are not all included in the Docker
image, but instructions are included and should not take
more than 15 minutes to get running.

* How much time is needed to complete experiments
(approximately)?: Re-verifying vWasm, and running
the main execution-time benchmarks are the most time
consuming parts of the artifact. In total, expect this to
take multiple hours, with times varying depending on
the available parallelism on the machine being tested on.

 Publicly available: The latest version of the reposito-
ries:

— https://github.com/secure-foundations/
provably-safe-sandboxing-wasm-usenix22
(top-level repository that contains the benchmarks,
and imports the rest as git submodules)

— https://github.com/secure-foundations/
vilasm

— https://github.com/secure-foundations/
rijasm

— https://github.com/secure-foundations/
wasm-semantics-fuzzer

The first of the above links contains the other three as
git submodules, pinned to specific git commits.

¢ Code licenses: BSD 3-Clause License

Archived (stable reference): Top-level repository, with
the other repositories fixed to specific git commit hashes:
https://github.com/secure-foundations/
provably-safe-sandboxing-wasm-usenix22/
tree/6f5668d3f216aeef65cf2bf2d916a40d3c750e53

A.3 Description
A.3.1 How to access

https://github.com/secure-foundations/
provably-safe-sandboxing-wasm-usenix22 is a
link to the top-level artifact repository, which contains the


https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22
https://github.com/secure-foundations/vWasm
https://github.com/secure-foundations/vWasm
https://github.com/secure-foundations/rWasm
https://github.com/secure-foundations/rWasm
https://github.com/secure-foundations/wasm-semantics-fuzzer
https://github.com/secure-foundations/wasm-semantics-fuzzer
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22/tree/6f5668d3f216aeef65cf2bf2d916a40d3c750e53
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22/tree/6f5668d3f216aeef65cf2bf2d916a40d3c750e53
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22/tree/6f5668d3f216aeef65cf2bf2d916a40d3c750e53
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22
https://github.com/secure-foundations/provably-safe-sandboxing-wasm-usenix22

rest of the related repositories as git submodules. To get them
all in one single command, run git clone --recursive
https://github.com/secure-foundations/provably-
safe-sandboxing-wasm-usenix22

Instructions for obtaining the vWasm Docker image can
be found at https://github.com/secure-foundations/
vilasm/tree/main/.docker, and a top-level Dockerfile
can be found at the root of the top-level repository.

A.3.2 Hardware dependencies

Requires an x86-64 machine. 32+ GB of memory is recom-
mended.

A.3.3 Software dependencies

Requires Docker installed, preferably on a Linux host. All
other requirements work inside the container.

A.3.4 Data sets

Included in the artifact.

A.3.5 Models
N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

We provide detailed instructions throughout the artifact in the
form of README . md files.

In  short, install Docker
com/get-started), recursive-clone the repositories
(git clone --recursive ... command from above),
go to provably-safe-sandboxing-wasm-usenix22/
vilasm/ .docker and follow instructions there to download
and import the pre-built image, and then jump inside the
provided Docker container. Following this, everything else
can be run inside the container.

A.5 Experiment workflow

For each experiment, we provide a relevant README .md file
with detailed instructions. We recommend executing steps in
the following order:

1. Build the Docker image, and jump into the container.
2. Run the verification and build process for vWasm.

3. Run the build process for rWasm.

(https://www.docker.

4. Generate .wasm files using wasm-semantics-fuzzer and
run them in vWasm and rWasm.

5. Run the microbenchmark.

6. Run the execution-time benchmarks in the benchmarks/
directory (here, you can choose to compare against
all other tools, or you can run fewer tools, see the
README . md for instructions).

7. Run the image-conversion-scenario.

A.6 Evaluation and expected results

Our paper claims to make the following contributions (copied
verbatim from Section 1):

1. An exploration of two distinct techniques to achieve
provably safe, performant, multi-lingual sandboxing. We
implement these as open-source tools, and evaluate them
on a collection of quantitative and qualitative metrics.

2. vWasm, the first verified sandboxing compiler for Wasm,
achieved via traditional machine-checked proofs.

3. rWasm, the first provably safe sandboxing compiler with
competitive run-time performance. We achieve this using
non-traditional repurposing of existing tools to provide
provable guarantees without writing formal proofs.

We provide detailed instructions throughout the artifact in
the form of README . md files.

To confirm that vWasm is formally verified, execute
the steps in vWlasm/README.md. Each file in the project
is machine-checked and only once all files are verified
by F*, will it produce the extracted OCaml files, which
are then compiled to an executable compiler. The high-
level theorem statement being proven can be found in
vWasm/compiler/sandbox/Compiler.Sandbox.fsti.

Both vWasm and rWasm can be run independently to com-
pile any Wasm module. Built-in runtime support is provided
for Wasm modules that expect a WASI interface.

Using wasm-semantics-fuzzer, one can perform validation
checks that the semantics implemented by vWasm and rWasm
do indeed match expected Wasm semantics.

The image-conversion-scenario demonstrates a converter
from GIFs to JPEGs, using version of libraries susceptible to
CVE-2008-0554. Using ./see_cve_impacts.sh, one can
run a proof-of-concept input that demonstrates how the na-
tive, vWasm-built, and rWasm-built versions of the programs
perform. Expected behavior is detailed further in the script
before each execution, but in summary, the native version (not
protected by vWasm or rWasm) will suffer a bad crash, while
the vWasm and rWasm versions will successfully safely trap
the violation.


https://github.com/secure-foundations/vWasm/tree/main/.docker
https://github.com/secure-foundations/vWasm/tree/main/.docker
https://www.docker.com/get-started
https://www.docker.com/get-started

Quantitative evaluation is performed using the benchmarks
and provided scripts. For execution time and run time bench-
marks, results should be within the error bars, if run on a
similarly modern hardware. The microbenchmarks are more
susceptible choice of hardware (as shown in Figure 8), and we
have tested only on an AMD Ryzen 3700x and an 19-9900k.

A.7 Experiment customization

After vWasm and rWasm are built, you can test them with any
WASI-enabled modules you like. Instructions are provided in

the relevant README . md files.

For the execution-time benchmarks, not all competing
Wasm execution runtimes are included in the vWasm Docker-
file, but the top-level Dockerfile does include them all. Addi-
tionally instructions for how to install them, or how to selec-
tively disable the runtimes are given.

A.8 Version

Based on the LaTeX template for Artifact Evaluation
V20220119.



	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version


