
A Artifact Appendix

A.1 Abstract
This artifact reproduces distributed systems experiments that
benchmark the collaborative zkSNARKs that we evaluate in
our paper.

Some experiments run on Google Cloud Platform, so we
will give the evaluators SSH access to one of our machines
which has appropriate credentials to launch the experiments.

The artifact includes scripts to re-run a limited version of
our experiments, and to re-render our plots.

A.2 Artifact check-list (meta-information)
• Algorithm: GSZ20 and SPDZ MCP protocols. Groth16, Mar-

lin, and PLONK zkSNARKs.

• Compilation: Rust compiler, nightly.

• Run-time environment: Linux, some experiments on GCP

• Execution: A distributed protocol

• How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

• How much time is needed to complete experiments (approx-
imately)?: 30 minutes

• Publicly available (explicitly provide evolving version ref-
erence)?: Yes, at https://github.com/alex-ozdemir/
multiprover-snark.

• Archived (explicitly provide DOI or sta-
ble reference)?: https://github.com/
alex-ozdemir/multiprover-snark/tree/
98cc63c7b885ade04989a5505050504ae7f2aac0

A.3 Description
A.3.1 How to access

The source is available at https://github.
com/alex-ozdemir/multiprover-snark/tree/
98cc63c7b885ade04989a5505050504ae7f2aac0.

We will provide access to a machine that can run the experiments.

A.3.2 Hardware dependencies

At least 8GB of RAM.

A.3.3 Software dependencies

Ubuntu packages: zsh libgmp-dev neovim autoconf pkg-config
libtool apache2-dev apache2 dnsmasq-base protobuf-compiler
libprotobuf-dev libssl-dev libxcb-present-dev libcairo2-dev
libpango1.0-dev tmux units r-base

Rust compiler: nightly after 2022-01-31.
Ripgrep
Mahimahi network emulator, patched as described in the source

distribution at /mpc-snarks/artifact_eval.md
R libraries: ggplot2, dplyr, readr, scales

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
(You can skip this. We’ll give you access to a machine with the
software set up, and alternatively to a VM that is already set up.)

1. New machine, at least 8GB RAM, 10GB disk

• Ubuntu 20.04 server

2. Do Ubuntu installation

• username: user password: user
• updating took a while

3. apt install zsh libgmp-dev neovim autoconf
pkg-config libtool apache2-dev apache2
dnsmasq-base protobuf-compiler libprotobuf-dev
libssl-dev libxcb-present-dev libcairo2-dev
libpango1.0-dev tmux units r-base
virutalbox-guest-utils

4. curl --proto '=https' --tlsv1.2 -sSf
https://sh.rustup.rs | sh

• nightly

5. cargo install ripgrep
6. Install the mahimahi shell network emulator

• clone it
• apply patches

– empty PICKY_CXXFLAGS in configure.ac (compiler
is pickier now)

– add mm-rate-to-events to install list in
scripts/Makefile.am (need this)

• ./autogen.sh && ./configure && make -j 8
• sudo sysctl -w net.ipv4.ip_forward=1

7. Install R libraries: ggplot2, dplyr, readr, scales
8. Set up folder sharing sudo adduser user vboxsf && sudo

systemctl enable virutalbox-guest-utils.service

A.5 Experiment workflow
1. Give us your public key using HotCRP.
2. Wait for us to confirm that we have granted that key access.
3. ssh aeval@128.12.176.8
4. cd ~/multiprover-snark/mpc-snarks
5. Run git clean -fd to clear any existing data.
6. Check that git rev-parse HEAD outputs

98cc63c7b885ade04989a5505050504ae7f2aac0.
7. cargo build --release

https://github.com/alex-ozdemir/multiprover-snark
https://github.com/alex-ozdemir/multiprover-snark
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0
https://github.com/alex-ozdemir/multiprover-snark/tree/98cc63c7b885ade04989a5505050504ae7f2aac0


• You can cargo clean first to force a clean build.

5. Optional: run the test suite ./test.zsh

• If it exits with a zero return code, it was successful.

Now, run the experiments (next section)

A.6 Evaluation and expected results
1. Run all experiments with time

./analysis/collect/artifact_eval.zsh

• This should take approximately 24 minutes.
• Alternatively: you can run the experiments one-by-one:

1. time ./analysis/collect/bad_net.zsh | tee
./analysis/data/bad_net.csv

– This runs locally and should take approximately 6 min-
utes

2. time ./analysis/collect/weak_machines.zsh

– This runs on GCP and should take approximately 10
minutes

3. time ./analysis/collect/Npc.zsh

– This runs on GCP should take approximately 8 minutes

2. Generate all plots: ./analysis/plotting/artifact_eval.zsh
3. Copy plots to your machine: scp

'aeval@128.12.176.8:multiprover-snark/mpc-snarks/analysis/plots/*.pdf'
.

4. Analyze:

1. Varying constraint counts: mpc.pdf should be compara-
ble to Figure 8

• At large constraint counts, 3PC GSZ should have
runtime similar to “Single Prover”. The SPDZ
MPCs should have approximately twice the run-
time.

2. Varying prover count: Npc.pdf should be comparable to
Figure 9

• Both SPDZ and GSZ should be parabolas. Slow-
down should be ~2x and ~1x respectively for 2
parties.

3. Varying link capacity: bad_net.pdf should be comparable
to Figure 10

• Slowdown should be going to ~2x as bandwidth
increases. Plonk should be slower than the others.

A.7 Experiment customization
If you want to reproduce the single-machine experiments (those
that vary link capacity using a network emulator) on your machine,
follow the directions below.

This is optional. You have already produced this graph on our
machine.

A.7.1 Build the collaborative proofs

Download the VM here: https://doi.org/10.5281/zenodo.
5889564. User: user. Password: user.

1. cd ~
2. git clone -b artiface-eval

https://github.com/alex-ozdemir/multiprover-snark
3. cd multiprover-snark/mpc-snarks
4. cargo build --release
5. Optional: run the test suite ./test.zsh

• If it exits with a zero return code, it was successful.

A.7.2 Collect the data

1. time ./analysis/collect/bad_net.zsh | tee
./analysis/data/bad_net.csv

• This should take approximately 6 minutes

A.7.3 Make & inspect the plots

1. Varying numbers of provers

• Run: Rscript ./analysis/plotting/bad_net.R
• Output plot: ./analysis/plots/bad_net.pdf
• It should be comparable to Figure 10

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

https://doi.org/10.5281/zenodo.5889564
https://doi.org/10.5281/zenodo.5889564

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Build the collaborative proofs
	Collect the data
	Make & inspect the plots

	Notes
	Version


