
A Artifact Appendix

A.1 Abstract

Keybuster is a research tool that allows to interact with the
Keymaster TA (Trusted Application) on Samsung devices
that run Android. Keybuster implements a Keymaster client -
based on the libkeymaster_helper.so library from Sam-
sung’s Keymaster HAL.

Keybuster requires sufficient permissions (root and
SELinux context) to access TZ drivers. To achieve this, we
rooted our device using Magisk and used the strong context
that it provides. Keybuster requires special hardware - an
Samsung Galaxy smartphone (S9 and newer models) with
a Trusted Execution Environment (TEE). The binary can be
downloaded from GitHub releases or built using Android
NDK. To reproduce our attacks, only minimal software re-
quirements are required (e.g., adb/ssh, openssl and python3).

Keybuster allows to reproduce the attacks that we describe
in the paper - the IV reuse attack and the downgrade attack.
The GitHub repository contains detailed step-by-step instruc-
tion on how to recreate both attacks. Additionally, it allows
researchers to freely explore the Keymaster TA without input
validation or filtering. Samsung validated both attacks using
Keybuster and assigned a High severity CVE to each issue.

In essence, the proof-of-concept attacks utilize Keybuster
to demonstrate private key material extraction of hardware-
protected keys that were encrypted by the TEE.

A.2 Artifact check-list (meta-information)
• Compilation: Android NDK (alternatively, the binary can

be downloaded from GitHub releases)

• Binary: keybuster binary for Android, included in GitHub
releases

• Run-time environment: Android specific, requires a suffi-
ciently strong context (e.g., rooted device)

• Hardware: Rooted Samsung Galaxy device (e.g. available
over adb/SSH)

• Security, privacy, and ethical concerns: The vulnerabili-
ties were responsibly disclosed to Samsung and they issued
patches. Running on a rooted Android device (that is con-
nected to WiFi) over SSH might be dangerous.

• Output: Console output. GitHub repository includes ex-
pected output.

• Experiments: Follow instructions in GitHub repository to
run the proof-of-concept scripts

• How much disk space required (approximately)?: Minimal

• How much time is needed to prepare workflow (approxi-
mately)?: < 2 minutes

• How much time is needed to complete experiments (approx-
imately)?: < 2 minutes

• Publicly available (explicitly provide evolving version ref-
erence)?: Will be made available on https://github.
com/shakevsky/keybuster

• Code licenses (if publicly available)?: Apache-2.0 License

• Archived (explicitly provide DOI or stable reference)?:
Will be made available on https://github.com/
shakevsky/keybuster/tree/v0.1.0

A.3 Description
A.3.1 How to access

The stable artifact will be made available on https://github.com/
shakevsky/keybuster/tree/v0.1.0.

A.3.2 Hardware dependencies

To reproduce our attacks with Keybuster it is required to have a
Samsung device (S9 and newer models) with a sufficiently strong
context, e.g., by rooting a device or by having a development device
from Samsung. We can try to make such device available over SSH.
Unpacking the artifact requires very little space (only to download
the binary or compile the sources).

A.3.3 Software dependencies

Keybuster is a binary that can be run on a rooted Samsung device.
To access such a device we’ve used adb, and we can try to make a
vulnerable device available over SSH. To reproduce the IV reuse at-
tack, no additional software is required. To reproduce the downgrade
attack (e.g., against a simplified Secure Key Import server) python3
and openssh can be used (although they only emphasize the point -
running the proof of concept script should be enough).

A.3.4 Security, privacy, and ethical concerns

The vulnerabilities were responsibly disclosed to Samsung and they
issued patches. We have some concerns over giving SSH access
to a rooted Android device over the internet, as it can potentially
compromise the home WiFi network of one of the authors.

A.4 Installation
Assuming that we’ll provide remote SSH access, we can upload
all the necessary files to the device so that no further setup is re-
quired and reviewers can simply run the proof-of-concept scripts.
Otherwise, the GitHub repository includes detailed steps of how to
reproduce the attacks (which bash commands to run).

A.5 Evaluation and expected results
Full details on reproducing the proof-of-concept attacks, as well as
expected outputs, will be made available in the GitHub repository.

The main claims of our paper include:

• We show that the hardware protection in Samsung Galaxy
S9 devices is vulnerable to an IV reuse attack on AES-GCM,
allowing the extraction of protected key material.

https://github.com/shakevsky/keybuster
https://github.com/shakevsky/keybuster
https://github.com/shakevsky/keybuster/tree/v0.1.0
https://github.com/shakevsky/keybuster/tree/v0.1.0
https://github.com/shakevsky/keybuster/tree/v0.1.0
https://github.com/shakevsky/keybuster/tree/v0.1.0


• We show a downgrade attack on Samsung Galaxy S10, S20,
and S21 devices, making them vulnerable to our IV reuse
attack.

• We evaluate the impact of our attacks and describe how to
exploit them to misuse the Keystore key attestation to bypass
FIDO2 WebAuthn login and compromise Google’s Secure Key
Import.

The proof-of-concept attacks that use Keybuster support the
claims:

• The IV reuse PoC shows that we are able to fully recover key
material from hardware-protected keys that were encrypted by
the TEE.

• The downgrade attack PoC shows that we are able to force
even the latest devices (S10, S20, and S21) to generate keys
that are vulnerable to IV reuse.

• The README.md of the downgrade attack also includes infor-
mation about how an attacker can use the downgrade attack to
target higher level cryptographic protocols such as Secure Key
Import (we included python3 code that emulates the server
and show how a successful attack breaks the security of the
keys) and WebAuthn (we included a GDB script that we’ve
successfully used against the StrongKey FIDO2 WebAuthn
server, as described in the paper).

The expected outputs and results are shown in the proof-of-
concept README files in the GitHub repository.

A.6 Notes

A.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Notes
	Version


