
A Artifact Appendix

A.1 Abstract
Our artifact provides code and binaries and scripts to repro-
duce experimental results in the paper. As for benchmarks,
we demonstrated experimental results on two real machines
(Mac mini based on M1 chip, and rpi3), but our artifact has
been prepared to run only on Mac mini, since rpi3 lacks a
support of ARM Pointer Authentication (PA). Other results
than benchmarks can be reproducible on host PC machines.

A.2 Artifact check-list (meta-information)
• Algorithm: compiler instrumentation, pointer analysis

• Program: Linux kernel, LLVM plugin, GCC plugin, python
scripts (all sources and binaries included)

• Compilation: LLVM 9.0, Modified GCC 7.3 (binaries and
sources included)

• Transformations: Security check insertion implemented as a
GCC plugin.

• Binary: Pre-built root file system, kernel images with various
configurations.

• Run-time environment: Ubuntu 18.04 or 20.04. Host envi-
ronment, not virtual environment, is recommended.

• Hardware: Mac mini with M1 chip

• Security, privacy, and ethical concerns: Some of shared
codes are subject to intellectual property. Please do not redis-
tribute them.

• Output: static analysis results of context analyzer and static
validator, benchmark results on Mac mini.

• How much disk space required (approximately)?: The ar-
tifact repository takes up around 5GB.

• How much time is needed to prepare workflow (approxi-
mately)?: It takes about 1-2 hours to prepare.

• How much time is needed to complete experiments (ap-
proximately)?: It takes about 1 hour to complete.

• Publicly available (explicitly provide evolving version ref-
erence)?: Some codes, which have no issue of intellec-
tual property, will be available at https://github.com/
SamsungLabs/PALinux/ soon.

A.3 Description
A.3.1 How to access

You can access all materials for the artifact evalua-
tion through a repository in the Bitbucket: https:
//bitbucket.org/jinb-park/pal-ae/. Note that this is a
private repo because we cannot open the source code to the public
yet due to an issue of intellectual property. Reviewers can access
this repo by using the SSH key posted on "Artifact access" section
in the hotcrp submission site.

A.3.2 Hardware dependencies

It is required to have a physical access to a mac mini built on M1
chip for reproducing benchmarks. Also, it requires a USB-to-C cable
and a HDMI cable for connection between the mac mini and host
PC.

A.3.3 Software dependencies

We have confirmed this artifact on Ubuntu 18.04/20.04 host ma-
chines, not virtual guest machines. We also tried our artifact on
virtual guests but found that some of experiments can go wrong. So
we recommend running this on host machines if possible.

A.4 Installation
First of all, copy the SSH key content into a file (e.g., pal_rsa), and
then type the following command:

$ chmod 600 pal_rsa
$ GIT_SSH_COMMAND=’ssh -i pal_rsa -o

IdentitiesOnly=yes’ git clone git@bitbucket.
org:jinb -park/pal-ae.git

Next, follow the guide, README.md, in the repository.

A.5 Experiment workflow
Our experiment workflow is twofold.
First, for functional evaluation, run the context analyzer to get a CFI
precision report and a guide for dynamic contexts; then build linux
kernel along with the guide; lastly, run the static validator on the built
kernel binary to find out insecure uses of PA (Pointer Authentication)
instructions. See "full-workflow/README.md" to get to know all
instructions needed for it.
Second, for reproducing key results, we put appropriate prebuilt files
as well as a README file that contains required instructions in each
directory in the repository. (analyzer/, precision/, static-validator/,
benchmarks/)

A.6 Evaluation and expected results
Key results that are reproducible are:

• Context analyzer (Table 6): We present the prebuilt llvm
bitcode file for a whole kernel binary and the source code of
context analyzer in the form of LLVM plugin. See "analyz-
er/README.md" for detail.

• CFI precision (Table 2 and Table 3): It shows how CFI pre-
cision gets better as dynamic contexts are used, and reproduces
Table 2 and Table 3 in our paper. See "precision/README.md"
for detail.

• Static validator (Section 4.5 - Results.): We give an in-depth
analysis for violations that our validator found (Section 4.5
Results). Also, we present two prebuilt kernel binaries (iOS
and PAL) and validator’s code written in python, allowing
to run our validator. See "static-validator/README.md" for
detail.

https://github.com/SamsungLabs/PALinux/
https://github.com/SamsungLabs/PALinux/
https://bitbucket.org/jinb-park/pal-ae/
https://bitbucket.org/jinb-park/pal-ae/


• Benchmarks on Mac mini (Table C1 and Section 6.3 - Per-
formance Overhead)): We present kernel images built with
or without PAL, and a root filesystem that contains macro- and
micro-benchmarks, and a helper script to run them on Mac
mini. See "benchmarks/README.md" for detail.

A.7 Experiment customization
Each README.md in the bitbucket repo explains on how to cus-
tomize experiments in detail.

A.8 Notes
The results of benchmarks can fluctuate. Even when we used the
same mac mini, we saw that its results can vary around 2 times
slower or faster at maximum, especially for benchmarks that take a
relatively short time.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


