
A Artifact Appendix

A.1 Abstract
We present our Otti USENIX ’22 artifact. It is a docker con-
tainer that orchestrates the components of Otti to a single
interface. To build the docker container and execute the script
that reproduces our results, see README.md in our repos-
itory eniac/otti. The docker container is composed of 1. the
Otti compiler from eniac/otti (Note: Otti was built on top of
the Haskell CirC compiler, and later ported to the Rust CirC
compiler. Both are included.) 2. The Spartan zkSNARK back-
end from microsoft/Spartan 3. The compatibility interface
between compiler and Spartan in elefthei/spartan-zkinterface.
We also fetch their dependencies, which are broadly Haskell,
Python, and Rust’s build tools, the lpsolve CLI, csdp, scikit-
learn, the flatbuffer library, the Z3 model checker and more
small, standard libraries in Haskell and Rust.

We also include in our repository representative datasets
of linear programming (LP) [1], semi-definite programming
(SDP) [3], and the datasets for stochastic-gradient descent
(SGD), accessible by installing the PMLB [4] Python library.
Our docker container includes scripts to run Otti end-to-end
– generate C files from datasets, execute and compile C files
to R1CS, and finally prove and verify their correct execution
with Spartan.

A.2 Artifact check-list (meta-information)
• Algorithm: Otti uses optimization certificates to produce

nondetermanistic checkers for zkSNARKS, as detailed in the
paper.

• Compilation: Otti has a compiler which is included in the
container.

• Transformations: Otti has transformations from model files
for LP, SDP, SGD to C files which are also included as Python
scripts.

• Binary: Binaries for LP solve [2] for x86_64 UNIX machines
are included in the container. As we are not certain regarding
compatibility with Apple M1, we would recommend running
the container on a x86_64 architecture.

• Data set: We use the NETLIB [1], SDPLIB 1.2 [3], and
PMLB [4] datasets which are publicly available and relatively
small – in the order of a few MB. Representative examples
from these datasets are included in the repository and you can
refer to our results in the paper for the complete list.

• Run-time environment: Docker community edition is re-
quired, platform independent.

• Hardware: For running large datasets, a computer with >
256GB RAM is required. Small datasets can be run on personal
computers.

• Run-time state: No

• Execution: Execution time varies from small to large datasets
and the available memory in the machine. Small ones are really
fast and finish in a few minutes but larger ones can take hours.

• Security, privacy, and ethical concerns: No

• Metrics: Execution time, prover time, verifier time, proof size,
number of constraints.

• Output: Our result is a total runtime measurement and a
“Verification Successful” message that confirms end-to-end
execution was proven to the verifier

• Experiments: Docker container takes care of setup. Variation
should be small (5-10%) in runtimes depending on the machine.
Variation in constraint and proof sizes should be 0.

• How much disk space required (approximately)?: The
docker container requires a substantial amount of disk space,
between 20GB-30GB.

• How much time is needed to prepare workflow (approxi-
mately)?: The docker container builds in about an hour.

• How much time is needed to complete experiments (approx-
imately)?: Smaller examples can be run immediately and take
a couple of minutes, larger examples must be downloaded, but
should not take more than an hour or so.

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/eniac/otti

• Code licenses (if publicly available)?: MIT license

• Data licenses (if publicly available)?: [1, 3] are very old and
no licensing information was found, [4] is under MIT license.

• Workflow frameworks used?: No

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/eniac/otti/releases/tag/v1.0

A.3 Description
How to access Clone repository from GitHub: https://
github.com/eniac/otti/releases/tag/v1.0

Hardware dependencies X86_64 machine with a sufficient
amount of RAM memory (> 200GB) if evaluating large datasets.

Software dependencies Docker community, latest version.

Data sets See [1, 3, 4].

Models N/A

Security, privacy, and ethical concerns N/A

A.4 Installation
Cloning To clone the repository and its submodules run git
clone -recursive https://github.com/eniac/otti.git

Building First, make sure you have installed Docker CE: https:
//docs.docker.com/get-docker/ Then build the Otti container:
docker build -t otti . Then run the container with 200GB of
memory and get terminal access: docker run -m 200g -it otti

https://github.com/eniac/otti
https://github.com/eniac/otti/releases/tag/v1.0
https://github.com/eniac/otti/releases/tag/v1.0
https://github.com/eniac/otti/releases/tag/v1.0
https://docs.docker.com/get-docker/
https://docs.docker.com/get-docker/

Reproducing experimental results After connecting to
the Docker container, run the following script to reproduce
the experimental results from Otti: ./run.py [-lp | -sdp
| -sgd] [-small | -full | -custom datasets/<path to
dataset>]

One of the -lp | -sdp | -sgd options is required. Then either
execute with the -small or -full flag, or the -custom flag with an
explicit path to a dataset file.

Running the small suite A subset of each dataset that can be
reproduced on a personal computer with x86_64 architecture and >=
12GB of RAM. These datasets are expected to take less than 1 hour.

Running the full suite A subset of each MPS dataset that can
be reproduced on a large machine with x86_64 architecture and >
200GB RAM. These datasets can take several hours, on the order
of 2-3 days to terminate. If your computer does not have sufficient
RAM memory or more applications have reserved memory, this
might be killed by the OS. This is a well-known limitation of the
compiler that consumes large amounts of memory.

Running individual files in datasets/* Our script will
generate a C file from the dataset file including non-deterministic
checks. We compile it with the Otti compiler, prove and verify it
and print Verification successful and the total runtime. of each stage.
Note that running indiviudal SGD datasets not from PLMB is not
supported at this time.

A.5 Experiment workflow
Our experiment runs a script around the components of Otti to com-
pile publicly available datasets to zkSNARKS and then verifies them,
printing “Verification successful” upon completion. We also output
profiling information such as runtime and zkSNARK proof size.

A.6 Evaluation and expected results
In Otti we evaluate the practicality of compiling numerical opti-
mization problems to zkSNARKs. We evaluate Otti in linear pro-
gramming, semi-definite programming, and stochastic optimization
problems. We apply this technique to publicly available datasets
[1, 3, 4], and show the following results.

A.6.1 Semidefinite programming results

Dataset Pro
ve

r (m
s)

Ver
ifie

r (m
s)

Pro
of

(K
B)

So
lve

r (m
s)

R1C
S co

ns
tra

int
s

truss1 5140 768 79.20 197 3,007,933
hinf1 7166 1209 79.88 215 4,703,942
hinf2 10607 1187 79.88 313 6,536,398
hinf3 7795 1038 79.88 362 6,536,398
hinf4 9008 1211 79.88 193 6,536,398
hinf5 7748 1248 79.88 238 6,536,398
hinf6 7051 912 79.88 294 6,536,398
hinf7 7432 1058 79.88 343 6,536,398
hinf8 7241 1105 79.88 321 6,536,398
hinf9 7546 1153 79.88 301 6,536,398
control1 7398 1069 79.88 181 6,968,254

A.6.2 Linear programming evaluation results

Dataset Pro
ve

r (m
s)

Ver
ifie

r (m
s)

Pro
of

(K
B)

So
lve

r (m
s)

R1C
S co

ns
tra

int
s

afiro 318 73 19.82 41 36,811
sc50a 320 78 19.82 42 54,066
sc50b 336 77 19.82 40 55,085
adlittle 609 117 29.33 45 180,747
sc105 473 104 20.51 45 113,282
scagr7 595 111 29.33 47 229,061
israel 1072 128 47.02 56 511,156
agg 2486 511 47.71 56 1,069,523
sc205 665 121 29.33 52 220,520
brandy 1631 227 47.02 61 815,356
beaconfd 2499 337 47.71 56 1,149,169
agg2 2237 313 47.71 79 1,887,762
agg3 2401 383 47.71 71 1,891,690
lotfi 1014 183 30.01 56 326,102
scorpion 1645 208 47.02 62 731,137
sctap1 1007 180 47.71 61 414,101
scfxm1 1831 254 47.02 105 965,504
bandm 2499 467 47.02 103 1,093,340
scagr25 1637 268 47.71 111 823,136
degen2 1534 223 47.71 308 626,407
scsd1 1636 216 47.02 54 1,034,359
fffff800 2431 330 47.71 197 1,479,725
scfxm2 2426 354 47.02 304 1,932,500
scrs8 2512 363 47.71 117 1,601,971
bnl1 4077 558 81.10 236 2,324,544
scsd6 2372 422 47.71 100 1,845,814
modszk1 2449 369 47.71 185 1,805,821
scsd8 4767 567 81.10 477 3,607,188

A.6.3 Stochastic gradient descent results

Dataset Pro
ve

r (m
s)

Ver
ifie

r (m
s)

Pro
of

(K
B)

So
lve

r (m
s)

R1C
S co

ns
tra

int
s

confidence 0.117 0.038 14.08 2.35 13,027
haberman 0.215 0.052 19.36 7.84 60,237
iris 0.293 0.076 11.47 4.13 4,730
new_thyroid 0.296 0.058 14.75 2.96 25,810
krkopt 0.997 0.125 29.31 39.70 399,555
diabetes 0.484 0.071 28.64 32.14 212,501
glass 0.104 0.027 11.47 3.14 7,571
labor 0.186 0.047 14.75 3.19 22,763
letter 1.01 0.164 29.31 27.97 374,655
lymphography 0.284 0.055 14.75 4.37 31,823
collins 0.323 0.08 14.75 4.23 31,733
allbp 0.301 0.055 20.03 11.35 103,451
dermatology 0.517 0.106 19.36 6.90 55,877
kddcup 0.904 0.147 28.64 67.80 198,840
molecular_biology_promoters 0.707 0.263 19.36 7.19 41,343
mfeat_karhunen 0.488 0.073 28.64 13.80 162,352
analcatdata_authorship 0.586 0.095 28.64 8.70 231,455
clean1 6.423 0.535 79.20 14.47 3,473,740
clean1 (50%) 4.675 0.607 79.20 14.47 2,262,837
clean2 (50%) 18.234 1.337 79.88 477.17 6,773,944
GE1000 (50%) 4.842 0.356 45.92 310.64 571,558

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

References

[1] LP/data index. https://ampl.com/netlib/lp/data/, 2013.

[2] lpsolve: Mixed integer linear programming (MILP) solver.
http://lpsolve.sourceforge.net/5.5, 2021.

[3] B. Borchers. SDPLIB 1.2, a library of semidefinite
programming test problems. Optimization Methods and
Software, 11(1-4), 1999.

[4] J. D. Romano, T. T. Le, W. La Cava, J. T. Gregg, D. J.
Goldberg, P. Chakraborty, N. L. Ray, D. Himmelstein, W. Fu,
and J. H. Moore. PMLB v1.0: an open-source dataset
collection for benchmarking machine learning methods.
Bioinformatics, 38(3):878–880, 10 2021.

https://ampl.com/netlib/lp/data/
http://lpsolve.sourceforge.net/5.5

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected results
	Semidefinite programming results
	Linear programming evaluation results
	Stochastic gradient descent results

	Version

