A Artifact Appendix
A.1 Abstract

This artifact contains a reference implementation of the pp-
SAT protocol, as well as supporting benchmarks and helper
scripts necessary for reproducing our experimental results.
Our implementation uses the EMP-toolkit framework for the
underlying secure computation. Specifically, the artifact con-
tains an implementation of the protocol as a secure distributed
program, compiling which produces a ppSAT solver binary.
This binary is then used by our testing infrastructure, and
would in production be distributed amongst the parties and
invoked over their local, private formulas to execute the SAT
solving decision procedure over their conjunction. The artifact
also includes functionality to support running microbench-
marks on individual giant steps of the ppSAT protocol over
random formulas, as well as our haplotype inference bench-
marks (and supporting scripts). It further includes code to
execute the ppSAT protocol ‘in the clear’ to allow evaluating
the overhead of the secure computation.

The artifact is composed of C++ code supported by Python
scripts, intended for execution on suitable x86-based hardware
running Ubuntu 20.04 or a similar, modern desktop Linux
distribution. The compilation and benchmarking are verified
by the Github Action CI.

A.2 Artifact check-list (meta-information)

* Algorithm: the ppSAT solver algorithm, including the under-
lying oblivious stack

* Program: implementations of private ppSAT and its tests, as
well as of ppSAT ‘in the clear’

* Compilation: cmake and make

* Data set: HapMap dataset, publicly available at
https://web.archive.org/web/20170706011547/http:
//www.stats.ox.ac.uk/~marchini/phaseoff.html

¢ Run-time environment: tested on Ubuntu 20.04, should work
on all modern desktop Linux distributions

¢ Hardware: tested on Intel(R) Core(TM) i7-8700K CPU @
3.70GHz * 6 processor

* Execution: shell scripts, python scripts, x86 binary

* Security, privacy, and ethical concerns: the HapMap dataset
is publicly released and widely used in genetic studies

* Metrics: running time

e Output: the running time and model (or UNSAT) for satisfi-
able formulas (or unsatisfiable formulas)

» Experiments: all experiments are verified by a Github Ac-
tion composed of four items: functionalities (unit testing
of our protocol components); microevaluation (benchmark-
ing of our protocol components, produces figures in §5.1);
simulation_difference (used to verify that our estimated
time is close to wallclock running time, as mentioned in §5.2);
and benchmark (reproduces Sections 5.2 and 5.3 — we only

ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

é;uSEnIX fusenlx
ASSOCIATION ASSOCIATION

AVAILABLE

include one test because running all benchmarks exceeds 6
hours of running time)

¢ How much disk space required (approximately)?: 10 GB

¢ How much time is needed to prepare workflow (approxi-
mately)?: 2 hours

¢ How much time is needed to complete experiments (ap-
proximately)?: 4 hours for benchmarking our cryptographic
protocols; 12 hours for obtaining the number of steps that our
solver needs for Haplotype benchmarks

¢ Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/PP-FM/ppsat

¢ Archived URL https://github.com/PP-FM/ppsat/
releases/tag/v1.0.0

A.3 Description

A.3.1 How to access

https://github.com/PP-FM/ppsat

A.3.2 Hardware dependencies

A modern x86 CPU.

A.3.3 Software dependencies

cmake, emp-toolkit, gtest, openssl

A.3.4 Data sets

The HapMap dataset. Our repo includes the data that are used
for our benchmarking.

A3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

We use a publicly released, widely-used dataset.

A.4 Installation

Installation can be easily done by following the instructions at
https://github.com/PP-FM/ppsat#installation. Our
Github Action scripts contain all steps to install our code on
a clean Ubuntu machine.

A.5 Evaluation and expected results

The latest Github Action results, at the point of submis-
sion, can be found at https://github.com/PP-FM/ppsat/
actions/runs/1894455944. The output of each subtask in-
cludes the running time and status of each test. They can be
used to plot the figures presented in the paper.

In the paper, we made the following claims.


https://web.archive.org/web/20170706011547/http://www.stats.ox.ac.uk/~marchini/phaseoff.html
https://web.archive.org/web/20170706011547/http://www.stats.ox.ac.uk/~marchini/phaseoff.html
https://github.com/PP-FM/ppsat
https://github.com/PP-FM/ppsat/releases/tag/v1.0.0
https://github.com/PP-FM/ppsat/releases/tag/v1.0.0
https://github.com/PP-FM/ppsat
https://github.com/PP-FM/ppsat#installation
https://github.com/PP-FM/ppsat/actions/runs/1894455944
https://github.com/PP-FM/ppsat/actions/runs/1894455944

1. Our ppSAT solver can correctly and reasonably ef-
ficiently solve SAT formulas based on our newly
designed heuristics, and all components scale well
when the size of the formula increases (§5.1). This
claim is tested in artifact/functionalites and
artifact/microevaluation.

2. Our ppSAT solver can be used towards a real
application of solving haplotype inference (§5.2).
The accuracy of our timing estimation is tested in
artifact/simulation_difference, while the rest
is benchmarked in artifact/benchmark.

3. Our ppSAT solver still incurs a high overhead compared
with a plaintext solver (§5.3). The results from §5.3 only
require a plaintext SAT solver, for which we use Kissat.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20220119.



	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version


