
A Artifact Appendix

A.1 Abstract
This artifact provides the steps for demonstrating the function-
ality of our system, minTAP, and reproducing the main results
in the paper. It includes proof-of-concept implementations
of both the client and the server based on the minTAP proto-
col. The client is implemented as a Chrome extension, while
the server hosts a minTAP-compatible service in a docker
container.

A.2 Artifact check-list (meta-information)
• Data set: We use a non-public dataset that takes about 300 MB.

• Run-time environment: The client requires a Chrome
browser with developer mode enabled. The server requires
Ubuntu 20.04 with Docker installed.

• Metrics: Privacy benefits (in terms of data minimized) and
execution time.

• Output: Graph and console outputs that should closely match
the results given in the original paper.

• Experiments: this artifact consists of three experiments: veri-
fying minTAP functionality, replicating privacy benefits, and
replicating execution time.

• How much disk space required (approximately)?: 500 MB.

• How much time is needed to prepare workflow (approxi-
mately)?: 1-2 hours.

• How much time is needed to complete experiments (approx-
imately)?: 1-2 hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: The code will be publicly available in https:
//github.com/EarlMadSec/minTAP.

• Archived (explicitly provide DOI or stable reference)?:
https://doi.org/10.5281/zenodo.6523010.

A.3 Description
A.3.1 How to access

An archived version of the code is available at https://doi.
org/10.5281/zenodo.6523010.

A.3.2 Hardware dependencies

We use an AWS EC2 t3.large instance, but any machine
with similar hardware specifications should also work.

A.3.3 Software dependencies

The following are the software dependencies for minTAP. The
provided Docker setup file will manage other dependencies.

• Client: Chrome 98

• Server: Ubuntu 20.04 with Docker 20.10 installed

A.3.4 Data sets

We did not publish the dataset.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

Server installation. Please follow the instructions lo-
cated under Server/README.md for building and running
the docker container. The docker will set up a minTAP-
compatible service on the host machine’s port 5000. Make
sure both inbound and outbound network traffics are allowed
on this port.

Test account setup. You need to create a developer account
at https://ifttt.com/developers and follow the steps
below to register the minTAP-compatible service with IFTTT.

1. Create a new service named mintap_service in https://
ifttt.com/services/new and add a new trigger based on
the instructions in Server/README.md.

2. Go to https://platform.ifttt.com/services/mintap_
service/api and fill the IFTTT API URL field with the URL
path to the minTAP-compatible service (i.e., port 5000 on the
server host machine).

3. Go to https://platform.ifttt.com/services/
mintap_service/api/authentication and fill
the Authorization URL field with [IFTTT API
URL]/mintap/auth/authorize and the Token URL
field with [IFTTT API URL]/mintap/auth/token.

Once the server information is set up, go to the following
links to run the IFTTT’s built-in sanity checks. If the server
is set up correctly, all tests should pass.

• https://platform.ifttt.com/services/mintap_
service/api/endpoint_tests

• https://platform.ifttt.com/services/mintap_
service/api/authentication_test

Client installation. Please follow Step 2 in this Chrome
help page to install minTAP’s browser extension. The client’s
source code is located inside the Client/ folder. Note that
the client does not need to be installed on the same machine
as the server.

https://github.com/EarlMadSec/minTAP
https://github.com/EarlMadSec/minTAP
https://doi.org/10.5281/zenodo.6523010
https://doi.org/10.5281/zenodo.6523010
https://doi.org/10.5281/zenodo.6523010
https://ifttt.com/developers
https://ifttt.com/services/new
https://ifttt.com/services/new
https://platform.ifttt.com/services/mintap_service/api
https://platform.ifttt.com/services/mintap_service/api
https://platform.ifttt.com/services/mintap_service/api/authentication
https://platform.ifttt.com/services/mintap_service/api/authentication
https://platform.ifttt.com/services/mintap_service/api/endpoint_tests
https://platform.ifttt.com/services/mintap_service/api/endpoint_tests
https://platform.ifttt.com/services/mintap_service/api/authentication_test
https://platform.ifttt.com/services/mintap_service/api/authentication_test
https://support.google.com/chrome/a/answer/2714278?hl=en
https://support.google.com/chrome/a/answer/2714278?hl=en


A.5 Experiment workflow
The experiment comprises 3 components:

1. Functionality test. The first workflow shows how our
minTAP client and server integrate with IFTTT. It re-
quires using the test account to create and modify rules
in IFTTT. Click the Personal Applets link in IFTTT
Developer Dashboard and create a new rule that uses
mintap_service as the trigger service. You may mod-
ify the filter code inside the rule to change its behav-
ior. Once you hover over the save button, minTAP’s
client will automatically fill the minTAP’s related fields.
See the Usage section in Server/README.md on how to
manually trigger the rule.

2. Analysis of privacy benefit. The second work-
flow describes the procedure to reproduce the anal-
ysis in Section 7.2. Refer to the description under
rule_analysis/README.md for detailed instructions.
Due to potential privacy concerns, we did not publish
the original dataset we used in the paper.

3. Execution time. We provide a test API to measure the
latency overhead of minTAP in terms of the execution
time of its additional operations. The test API can be
accessed using the curl command:

$ curl "[IFTTT API URL]/ifttt/v1/triggers/bench"

A.6 Evaluation and expected results
Following is a description of the expected results after running
each workflow.

1. Functionality test. After the rule is run, check the rule’s
activity logs on IFTTT’s website (by clicking the view
activity button in the rule’s page) to confirm that all
unneeded trigger attributes are removed.

2. Analysis of privacy benefit. A plot similar to Figure 9
should be generated.

3. Execution time. The test API will return the average
latency overhead (in seconds) over 20 runs. The value
should be less than 0.03 seconds.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Version


