
A Artifact Appendix

A.1 Abstract
Our artifact is the code to create an ultra-wide band (UWB)
high-Rate pulse repetition frequency (HRP) sniffer that gener-
ates accurate timestamps and forwards timestamps and UWB
frames to Wireshark. We used this sniffer to identify timings
in UWB ranging sequences and to attack the frames using the
Ghostpeak attack. The artifact includes all necessary source
code to run it on a recent DWM3000EVB from Decawave
attached to a NUCLEO-F429ZI. A different board can be
used, but the speed may suffer due to different SPI speeds.

We do not publish sample code for the attacks demonstrated
in our paper, since this would violate German laws and might
allow malicious actors to enter a system secured by UWB
distance ranging.

A.2 Artifact check-list (meta-information)
• Algorithm:

• Compilation: For the UWB sniffer we use the free
STM32CubeIDE. The host a Python script.

• Binary: We do not include binaries, since the configuration
needs to be changed depending on the UWB channels to
listen on.

• Run-time environment: The STM32CubeIDE runs on
Linux, macOS and Windows

• Hardware: We use a DWM3000EVB as the UWB receiver
and attach it to a NUCLEO-F420ZI. The NUCLEO needs
some slight hardware modifications according to the man-
ufacturer Decawave.

• Execution: To actually sniff UWB signals some properties
about the signals are needed: The channel, the preamble
code and the start of frame delimiter (SFD) used.

• Output: Using the sensniff Python script the sniffer reports
rx accurate timestamps and received frames

• Experiments: We do not apply for the reproducibility
badge

• How much disk space required (approximately)?: 500KB

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours

• Publicly available: https://github.com/
seemoo-lab/uwb-sniffer

• Code licenses: MIT License

• Archived: https://github.com/seemoo-lab/
uwb-sniffer/releases/tag/v1.0

A.3 Description
Our sniffer includes the necessary source code for the UWB board
and the host machine to receive and process frames. Furthermore,
we include a manual and a YouTube video on how to get started.

Figure 1: Shows a NUCELO-F429ZI with the
DWM3000EVB attached.

Figure 2: Necessary modifications on the NUCLEO board.

A.3.1 How to access

The artifact is available on GitHub: https:
//github.com/seemoo-lab/uwb-sniffer/tree/
usenix22-artifact-evaluation.

Furthermore, we provide a YouTube video that show how to setup
the sniffer and how to run it: https://youtu.be/akCwyHqgbhY.

A.3.2 Hardware dependencies

To run it we require the NUCELO-F429ZI and the DWM3000EVB
attached to the NUCLEO as shown in Figure 1.

The NUCELO-F429ZI needs to be slightly modified to behave
correctly when the DWM3000EVB is attached. These modifications
are not necessary for nRF boards. Remove solder on SB121 and
solder SB122. These modifications are shown in Figure 2.

A.3.3 Software dependencies

We use the STM32CubeIDE to compile and flash the attached
NUCELO. We use Python to run a host script that receives input
from the UWB Sniffer.

A.3.4 Data sets

N/A

https://github.com/seemoo-lab/uwb-sniffer
https://github.com/seemoo-lab/uwb-sniffer
https://github.com/seemoo-lab/uwb-sniffer/releases/tag/v1.0
https://github.com/seemoo-lab/uwb-sniffer/releases/tag/v1.0
https://github.com/seemoo-lab/uwb-sniffer/tree/usenix22-artifact-evaluation
https://github.com/seemoo-lab/uwb-sniffer/tree/usenix22-artifact-evaluation
https://github.com/seemoo-lab/uwb-sniffer/tree/usenix22-artifact-evaluation
https://youtu.be/akCwyHqgbhY


Figure 3: Importing a project in STM32CubeIDE.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

None.

A.4 Installation
Download the STM32CubeIDE and install it: https://www.st.
com/en/development-tools/stm32cubeide.html

Download the software samples from Decawave, which
include the API to communicate with the DWM3000EVB.
Due to license issues, we cannot host it on our GitHub.
https://www.decawave.com/wp-content/uploads/2022/03/
DW3xxx_XR6.0C_24Feb2022.zip

1. Open a new workspace in the STM32CubeIDE

2. Go to File → Import → General → “Import ac6 System Work-
bench for STM32 Project” (see Figure 3)

3. Select the root folder of the sample project and import the
project

4. Accept to convert the project to the new format

5. Now you can build and run the examples

6. Make sure that the examples build without an error

A.4.1 Integrate the sniffer

1. Copy all source files from this project to the root folder of the
DWM3000 sample code

2. Overwrite the main.c with the one in this project

3. Compile the project

4. Run it on an NUCLEO-F429ZI

Figure 4: Screenshot of Wireshark with received frames.

A.4.2 Configure the sniffer

UWB has a variety of available configurations: channel, preamble
code, data rate, sts mode, and sts length. Most of them have to be
known in advance to sniff a communication. In most cases these
values can be identified through means of reverse-engineering. For
iOS UWB communication, we use the iOS system logs from the
nearbyd to identify those values. The values can be changed in the
uwb_sniffer.c file in the config struct.

In the current implementation the sniffer also transfers frames
with incorrect headers or frame lengths to the host. So make sure to
check the Wireshark output if it is correct. An incorrect configuration
leads to long and incorrect frames where the STS or pars of the
preamble will be interpreted as data.

A.5 Experiment workflow
With the sniffer any UWB communication following the
IEEE802.15.4-2020 HRP standard can be sniffed. This includes
frames and accurate timestamps. For this the sniffer needs to be
configured as described in Section A.4.2.

With the STM32CubeIDE you can flash the NUCLEO with the
attached DWM3000EVB board. When powered on it will immedi-
ately start sniffing and trying to forward the packets to the attached
computer. To receive the frames on the computer it’s necessary to
run the provided python script.

$ python3 sensniff.py -a
The script will try to automatically detect the connected device.

If this fails (due to different OS support), we recommend passing
the right port directly:

$ python3 sensniff.py -d /dev/cu.usbmodem230d
Then launch Wireshark on the same computer and add a new pipe

at /temp/sensniff. When listening to this pipe in Wireshark all
frames received by the UWB sniffer will appear here. This includes
accurate timestamps when the frame has been received. Figure 4
is a screenshot of a running Wireshark instance that receives UWB
frames.

A.6 Evaluation and expected results
In our paper we state that we are able to run the attack Ghostpeak that
achieves distance reductions in UWB ranging environments using
the modern IEEE 802.15.4z standard. The attack works against the

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.decawave.com/wp-content/uploads/2022/03/DW3xxx_XR6.0C_24Feb2022.zip
https://www.decawave.com/wp-content/uploads/2022/03/DW3xxx_XR6.0C_24Feb2022.zip


Apple U1 chip in combination with any other compatible UWB chip
(DW3000 from Qorvo/Decawave and SR150 from NXP). We do not
publish the attack code, but provide our code for the UWB sniffer,
which we used to measure accurate timestamps of the attack and
analyze ranging sequences. The sniffer also forwards UWB frames
to the host machine which can then display them in Wireshark.

Most U1 to U1 ranging scenarios can be monitored using the

sniffer. Depending on the devices used and the ranging sequence in
use the sniffer may need to be modified.

A.7 Version

Based on the LaTeX template for Artifact Evaluation V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Integrate the sniffer
	Configure the sniffer

	Experiment workflow
	Evaluation and expected results
	Version


