
A Artifact Appendix

A.1 Abstract
The artifact evaluation consists of two parts: (1) evaluation of
attacks on signed OpenDocument Format (ODF) documents
and (2) evaluation of Document Signature Validator (DocSV).

To evaluate the attacks on signed ODF documents, we
provide multiple proof of concept (PoC) files. By opening
the PoC files the reviewer can evaluate the success of the at-
tack. This success is either code execution via signed macros,
content spoofing, or timestamp manipulation. To evaluate all
attack classes, at least one Windows 10 system with the af-
fected ODF applications is required. Optionally, a macOS,
Linux, iOS, and an Android system is required to evaluate the
artifacts under all analyzed ODF applications.

The second part of the artifact evaluation focuses on DocSV
– our tool is capable to evaluate the signature status of
signed documents in ODF, Office Open XML (OOXML),
and Portable Document Format (PDF) formats. We provide a
collection of test documents that can be used by the reviewers.
Both the source code and the compiled executable are pro-
vided for this purpose. For the evaluation of the DocSV tool,
a Windows 10 system with the respective ODF, OOXML and
PDF applications to be tested is required.

A.2 Artifact check-list (meta-information)
✓ Run-time environment

– Required: Windows 10

– Optional: macOS Catalina, Ubuntu 20.04.3 LTS, iOS 15,
and Android 10

✓ Software Installation

– ODF office applications (see Section A.3.1)

– DocSV executable (see Section A.3.1)

✓ Resources for the Evaluation

– How much disk space required – approx. 50 GB

– How much time is needed to prepare workflow – approx.
2h

– How much time is needed to complete experiments – ap-
prox. 1h

✓ Code licenses (if publicly available)?: trial licenses are sufficient

A.3 Description
A.3.1 How to access

Access to the Vulnerable Applications Below we have listed
links to the installation files of various ODF applications. Please note
that not all ODF applications are freely available in the vulnerable
version.

• Apache OpenOffice: choose version 4.1.8 here.

• IBM Lotus Symphony 3.0.1: here, fp2-Update: here.

• LibreOffice 7.0.4.2: here.

• Microsoft Office 2019: Microsoft Office 2019 can be down-
loaded as a trial version here.

• Collabora Online (CODE) 6.0-18: Virtual machine (VM) im-
ages for the online variant of Collabora are available here.

Artifacts Stable URL to all artifacts: https://github.com/
RUB-NDS/DocumentSignatureValidator/releases/tag/
Artifact_Evaluation

• PoC files for all attacks described in the paper are available
here.

• DocSV source code and a compiled executable can be down-
loaded on GitHub.

• A collection with test files for DocSV is available here.

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

To evaluate all attack classes, at least a Windows 10 system with
the vulnerable ODF applications is required. Optionally, a macOS
Catalina, Ubuntu 20.04.3 LTS, iOS 15 and Android 10 system is
required to be able to evaluate the artifacts under all analyzed ODF
applications.

Due to their same code base, LibreOffice and Collabora Office
cannot be installed on Windows at the same time.

For OpenOffice on macOS, the Mozilla Certificate Store must
be associated to properly validate the trusted entity certificate (see
configuration tutorial).

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
ODF Signature Attacks All ODF applications (see Sec-
tion A.3.1) need to be installed on a Windows 10 VM or on a physical
machine. Optionally, the same for macOS Catalina, Ubuntu 20.04.3
LTS, iOS 15 and Android 10. To evaluate the PoC files on Collabora
Online, run the prepared VM on VMware or VirtualBox and follow
the instructions.

https://www.openoffice.org/download/index.html
https://securedl.cdn.chip.de/downloads/4263602/IBM_Lotus_Symphony301_w32_de.exe
https://www.ibm.com/support/fixcentral/swg/selectFixes?product=ibm/Lotus/Lotus+Symphony&fixids=Lotus_Symphony301_component_w32_fp2.exe
https://downloadarchive.documentfoundation.org/libreoffice/old/7.0.4.2/
http://officecdn.microsoft.com/pr/492350f6-3a01-4f97-b9c0-c7c6ddf67d60/media/en-us/Professional2019Retail.img
https://appcenter.software-univention.de/univention-apps/4.3/collabora/
https://github.com/RUB-NDS/DocumentSignatureValidator/releases/tag/Artifact_Evaluation
https://github.com/RUB-NDS/DocumentSignatureValidator/releases/tag/Artifact_Evaluation
https://github.com/RUB-NDS/DocumentSignatureValidator/releases/tag/Artifact_Evaluation
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/poc_files_ODF_signature_attacks
https://github.com/RUB-NDS/DocumentSignatureValidator
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/test_documents
 https://wiki.openoffice.org/wiki/Certificate_Detection

DocSV To evaluate DocSV, no installation is required, just run
DocumentSignatureValidator.exe. In addition to ODF applica-
tions, DocSV can also be evaluated with PDF applications (Adobe
Acrobat Reader DC and Foxit PDF Reader), as well as with OOXML
applications (Microsoft Office).

Installation steps of Collabora Online (CODE) VM
1. Import the VM Image.

2. Change the network adapter to NAT in your virtualization
software and add a port forwarding rule to forward port 443 to
the VM.

3. Start the VM.

4. Enter a City.

5. Use the IP provided by DHCP or one of your own.

6. Select Manage users and permissions directly on
the system.

7. Enter test as organization and add a mail address.

8. Choose a password.

9. Set code.test.local as FQDN.

10. Add code.test.local with IP 127.0.0.1 to the etc/hosts
file of the operating system.

11. After the setup is finished, open https://code.test.local
via the browser and register for a free license.

12. After that you can upload the ODF documents via https:
//code.test.local/nextcloud/login. Login: User name
Administrator, Password: which was assigned during the
installation.

A.5 Experiment workflow
Ground Truth First, the reviewers can see different documents
that are: not signed, signed with a trusted key, signed with an un-
trusted key, and manipulated by invalidating the signature.

Configuration We need to trust the certificate of the
trusted.person.odf@gmail.com and allow the execu-
tion of macros for this person. For this purpose, open
the file ODF_macro_signature_valid_and_trusted.odt.
A dialog then opens asking whether the creator
trusted.person.odf@gmail.com should be trusted. To do
this, check the "Always trust macros from this source" box and then
press the "Enable Macros" button.

DocSV: Usage and Configuration DocSV uses XML config-
uration files for execution. Sample configuration files for evaluating
various applications are available here.

• Input Files: In <files><path></path></files> users can
specify the directory of the documents that will be analyzed.
Test documents with different signature statuses and formats
are available here.

• Results: The directory for saving the screenshots created
during the check, as well as the CSV report are specified in
<output><path></path></output>.

• Detection Rules: In <sigvalidstring/>,
<siginvalidstring/> and <sigproblem/> the detec-
tion rules for each application can be specified. Note that the
default configuration is dependent on the language. To avoid
false results, use the English version of the office applications.

• Timeout: DocSV analyzes the application’s process memory.
To guarantee that the analyzed document is fully loaded into the
memory, users can configure a timeout in <wait/>. Users with
limited PC resources are encouraged to increase the timeout.

DocSV requires one parameter as input – the configuration file:
DocumentSignatureValidator.exe config_file_examples/
config_LibreOffice.xml

Prepare Foxit and Adobe for DocSV Foxit and Adobe use
their own certificate stores, so unknown signer certificates must first
be set up as trusted.

Adobe:

1. Open PDF test file containing a valid signature.pdf with Adobe
Acrobat.

2. Open the Signature Panel.

3. Click on the arrow of the Rev. 1... signature.

4. Open Signature Details→Certificate Details...

5. Click on Trust→Add to Trusted Certificates... to
trust the certificate.

Foxit:

1. Open PDF test file containing a valid signature.pdf with Foxit.

2. Open the Siganture Panel (left side Manage digital
signatures).

3. Right click on the signature Rev. 1...→Show Signature
Properties.

4. Click on Show Certificate...

5. Click on Trust→Add to Trusted Certificates to trust
the certificate.

DocSV must be added to Foxit as a trusted app. Click on
File→Preferences→Trust Manager→Open Foxit PDF
Reader from applications without valid digital
signatures→Change Settings... add the path to the DocSV
.exe and click Allow.

A.6 Evaluation and expected results

A.6.1 ODF Signature Attacks

All five attacks described in the paper can be evaluated. The
PoC files are sorted by the vulnerable ODF applications for
this purpose. For each attack class, two ODF documents are
included, as well as two folders. Files starting with 01_ repre-
sent the initial document. Files starting with 02_ represent the
documents manipulated by the attacker. The corresponding
directories contain the unzipped ODF file.

https://code.test.local
https://code.test.local/nextcloud/login
https://code.test.local/nextcloud/login
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_without_signature.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_signature_valid_and_trusted.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_signature_valid_but_untrusted.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_signature_valid_but_untrusted.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_document_signature_invalid.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/poc_files_ODF_signature_attacks/aa_sample_documents/ODF_macro_signature_valid_and_trusted.odt
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/config_file_examples
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/test_documents
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/test_documents/PDF/PDF%20test%20file%20containing%20a%20valid%20signature.pdf
https://github.com/RUB-NDS/DocumentSignatureValidator/blob/main/test_documents/PDF/PDF%20test%20file%20containing%20a%20valid%20signature.pdf

01: Macro Manipulation with Certificate Doubling The
attacker signs the document with its own key and thus can
choose the macro code. The public key of a trusted entity (e.g.,
trusted.person.odf@gmail.com) is included to mask the
document as trustful.

✓ Execution: Open the document
02_doc_macros_signed_by_attacker_manipulated.odt.

✓ Expected Result: After opening the doc-
ument, macro code is automatically exe-
cuted which opens a simple message box. In
Tools→Macros→Digital Signatures..., the
trusted entity trusted.person.odf@gmail.com is
displayed to the victim as the signer, even though the
signature was created by the attacker.

Figure 1: Expected result for 01: Macro Manipulation
with Certificate Doubling

02: Content Manipulation with Certificate Doubling The
attacker signs the document with its own key and thus can
choose the content of the document. The public key of a
trusted entity (e.g., trusted.person.odf@gmail.com) is in-
cluded to mask the document as trustful.

✓ Execution: Open the document
02_doc_signed_by_attacker_manipulated.odt.

✓ Expected Result: After opening the document,
a valid and trusted document signature is dis-
played to the victim. Under File→Digital
Signatures→Digital Signatures..., the trusted
entity trusted.person.odf@gmail.com is displayed to
the victim as the signer, even though the signature was
created by the attacker.

03: Content Manipulation with Certificate Validation By-
pass The attacker signs the document with its own key and
thus can choose the content of the document. The attacker dis-
ables the verification of the certificate chain and successfully
masks the document as trustful.

✓ Execution: Open the document
02_doc_signed_by_attacker_manipulated.odt.

Figure 2: Expected result for 02: Content Manipulation
with Certificate Doubling

✓ Expected Result: After opening the document, a valid
and trusted document signature is displayed to the
victim. Under File→Digital Signatures→Digital
Signatures..., a trusted entity arbitrarily chosen by the
attacker is displayed to the victim as the signer, even
though the signature was created by the attacker.

Figure 3: Expected result for 03: Content Manipulation
with Certificate Validation Bypass

04: Content Manipulation with Signature Upgrade The
attacker possess an ODF with signed macros that is created
by trusted entity. The attacker abuses the partial coverage
of the digital signatures and manipulates the content of the
document directly due to the missing integrity protection.
Thus, the attacker can choose the content of the document
arbitrarily.

✓ Execution: Open the document
02_doc_macros_signed_by_trusted_person_manipulated.odt

with Microsoft Office 2019.

✓ Expected Result: After opening the document, a valid
and trusted document signature is displayed to the vic-
tim. Under File→View Signatures, the trusted entity
trusted.person.odf@gmail.com is displayed to the
victim as the signer.

05: Timestamp Manipulation with Signature Wrapping
The attacker possess an ODF with signed content that is cre-
ated by trusted entity. The attacker applies an XML Signature

Figure 4: Expected result for 04: Content Manipulation
with Signature Upgrade

Wrapping attack. As a result the attacker can choose any
timestamp for the signature.

✓ Execution: Open the document
02_doc_signed_by_trusted_person_manipulated.odt.

✓ Expected Result: After opening the document,
a valid and trusted document signature is dis-
played to the victim. Under File→Digital
Signatures→Digital Signatures..., the trusted
entity trusted.person.odf@gmail.com is displayed
to the victim as the signer with the attacker’s chosen
timestamp 66/66/6666 00:00:00.

Figure 5: Expected result for 05: Timestamp
Manipulation with Signature Wrapping

Further Macro Exploit Examples If the reviewers are
interested in more powerful exploits, we created additional
examples. These PoC files contain two more variants of the
attack class 01 and are specially designed for Windows.

First variant exe_download_execute: The included
macro downloads an .exe file from https://github.com/
attodf/odf-test when the document is opened and saves
it to C\Users\%USERNAME%\AppData\Local\Temp, then au-
tomatically executes the program. The program is harmless
and does not contain any malicious code. It just outputs a text
on the console. A working Internet connection is required for
this variant.

Second variant ransomware: The included macro
creates the file example_ransomware.py under

C:\Users\%USERNAME%\AppData\Local\Temp.
Then, this Python script is executed, using the
Python environment of the respective office ap-
plication, which can be found under C:\Program
Files\%ODF-Application%\program\python.exe.
This ransomware simulation serves as a PoC and is
not supposed to do any damage, so it only creates a
hashed file with .hashed extension from each file under
C:\Users\%USERNAME%\Desktop. The function to delete
the original files is not active in the Python code.

A.6.2 DocSV

DocSV can be used to check the signature status of signed
documents in ODF, PDF and OOXML formats. DocSV is
started by DocumentSignatureValidator.exe via the con-
sole. The configuration is done using an XML configuration
file which must be passed as argument (see Section A.5).
DocSV automatically opens the individual signed documents
and determines the signature status through a memory analy-
sis. The analysis results are exported as a CSV file. In addition,
a screenshot of the opened document is also saved.

✓ Execution: Start DocSV and pass one of the prepared
configuration files. DocSV will test the files stored in the
folder test_documents. As part of the artifact evaluation,
you can generate your own files and test these with DocSV.

✓ Expected Result: DocSV produces a report containing
the result of the analysis and saves this report together with
the taken screenshots in results_dovsv. Our collection of
test documents contains one unsigned, signed, and manip-
ulated document. DocSV should detect these correctly.

A.7 Experiment customization
N/A

A.8 Notes
The certificate of the trusted entity is valid until 11st May
2022. For the evaluation of the attacks after this date, it is nec-
essary to reset the date of the operating system accordingly.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

https://github.com/attodf/odf-test
https://github.com/attodf/odf-test
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/config_file_examples
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/test_documents
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/results_docsv
https://github.com/RUB-NDS/DocumentSignatureValidator/tree/main/test_documents

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	odf Signature Attacks
	docsv

	Experiment customization
	Notes
	Version

