
A Artifact Appendix

A.1 Abstract
The purpose of this artifact is to allow reproduction of the
performance results in Section 8, specifically the channel
opening microbenchmark table (Figure 6) and the full proof
generation benchmark for the case studies (Figure 7). All
runtime estimates in this abstract are for a Linux system with
an 8-core 2.2 GHz AMD EPYC 7571 CPU and 32 GB of
RAM. All of our code is available on GitHub.

After installing dependencies, which should take roughly
ten minutes, reproducing these results has two steps: (1) cir-
cuit generation and (2) proof generation. Circuit generation
takes as input a (roughly) human-readable programmatic de-
scription of our circuits written in an extension of Java, and
outputs a gate-level description of the corresponding arith-
metic circuit. This programmatic circuit description is an
intermediate representation obtained by partially compiling
the original handwritten xJsnark source code. We do not re-
quire the original xJsnark source for the artifact evaluation—
reading it requires installing a specific version of a large and
unwieldy IDE called MPS—but our GitHub repository in-
cludes instructions on viewing the xJsnark source.

Circuit generation involves heavily optimizing the circuit
description, and so is computationally quite expensive, and
will take up to twenty minutes (to generate the nine example
circuits in this artifact). The purpose of re-running the circuit
generation as part of the artifact is to allow users to reproduce
the claimed gate counts for our circuits. We provide a single
script to automatically perform all of circuit generation.

After the circuits’ descriptions have been generated, the
last step is proof generation. Proof generation takes as input
the circuit descriptions as well as sample circuit inputs (e.g.,
TLS handshake transcripts and ciphertexts), generates public
parameters, produces proofs, and verifies them. The provided
proof generation script outputs information about the time
taken to generate and verify proofs, as well as the sizes of the
public parameters. We estimate this will take in total up to
twenty minutes (to complete all nine circuits in the artifact).

A.2 Artifact check-list (meta-information)
• Algorithm: zkSNARKs, Groth16

• Program: xJsnark, libsnark

• Compilation: Java, cmake

• Data set: Manually generated test data. Included.

• Run-time environment: Ubuntu 20.04, OpenJDK 11.0.13

• Hardware: 32 GB RAM, 8 cores

• Metrics: Circuit size, proving time, verification time, parame-
ter size

• Experiments: Bash scripts

• How much disk space required (approximately)?: 3 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 10 min

• How much time is needed to complete experiments (approx-
imately)?: 40 min

• Publicly available: GitHub: https://github.com/
pag-crypto/zkmbs/

• Archived (stable URL): https://
github.com/pag-crypto/zkmbs/tree/
096ed18772d8e63f4a03e7f4d16e118aa3923135

A.3 Description
A.3.1 How to access

Our artifact’s code is publicly available on GitHub here:
https://github.com/pag-crypto/zkmbs
This appendix contains all the instructions specific to in-

stallation and reproducing the paper’s benchmarks.

A.3.2 Hardware dependencies

We recommend using a machine with 8 cores and at least 32
GB RAM.

A.3.3 Software dependencies

The only major dependency is Java. We recommend using
a GNU/Linux system and have provided installation scripts
compatible with the Ubuntu 20.04 Linux distribution.

A.4 Installation
1. Clone the git repository and change to the root directory

(time required: < 1 minute):

$ git clone https://github.com/pag-crypto/zkmbs.git

$ cd zkmbs/

2. Install jsnark (a library used by xJsnark) and its depen-
dencies by running this script inside zkmbs/ (time re-
quired: 5–10 minutes): $ ./install_deps_jsnark

• If you can’t use the script, follow the “jsnark instal-
lation instructions” here: https://github.com/
akosba/jsnark#prerequisites

• On some systems, this step may fail when
trying to install the dependencies of lib-
snark as specified in this file: https:
//github.com/akosba/libsnark/blob/
213547311d16644bde7ef806b77dfae25c7f734c/
.gitmodules. Please edit all URLs
in your local version of the file at
zkmbs/jsnark/libsnark/.gitmodules
(which should be cloned by this point) to use
https (and not git) and try again.

https://github.com/pag-crypto/zkmbs/
https://github.com/pag-crypto/zkmbs/
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs
https://github.com/akosba/jsnark#prerequisites
https://github.com/akosba/jsnark#prerequisites
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules


3. Enter gen/ and compile xJsnark: $ cd gen/ and

$ ./compile_circuits . The exact output will de-
pend on the system but it should finish without any errors.
On Ubuntu, our output looks like this:

Note: Some input files use ...
Note: Recompile with -Xlint:unchecked ...
compilation SUCCESS

A.5 Experiment workflow
After installation, the structure of the main directories should
look like this:

zkmbs
+-- gen
| +-- circuits
| +-- logs
| +-- src
+-- jsnark

The experiment scripts will be run inside gen/. The Java
source code describing the circuits is located in gen/src/.

Experiment 1 will generate full circuits from these descrip-
tions and store them in gen/circuits/. Experiment 2 will
use these circuit descriptions to generate public parameters
and measure proving and verification times using sample
input files located in gen/.

A.6 Evaluation and expected results
The main performance claims in our paper are stated in Fig-
ures 6 and 7. There are nine circuits involved in our experi-
ments (the five entries of Figure 6 and the four entries of Fig-
ure 7). The first experiment reproduces the “Total” columns of
the two tables. The second experiment reproduces the “Time”
and “SRS” columns while ensuring that verification time is
under 5 ms. We recommend using a system with at least 32
GB RAM as generating proofs for the largest of our circuits
(ChannelBaseline) requires a lot of heap space, and in fact
causes errors on systems with just 16 GB memory.

Note that both Figures 6 and 7 list per-subcircuit gate counts
that sum to the “Total” count. Our code only allows verify-
ing the gate counts of the entire circuit, as the per-subcircuit
counts were approximated by manually inspecting the func-
tions used to build each circuit.

Experiment 1: Reproduce Gate Counts: The aim is to
generate circuits from our descriptions and reproduce the
total gate counts of each circuit (the Total columns of the
two tables). This experiment can be repeated by running
the script ./reproduce_total_counts (time required: 20
minutes) in the gen/ directory. The script outputs into file
column_total.txt, which should look like this after the
script finishes:

ChannelBaseline 747.9 # BCO
ChannelShortcut 111.1 # SCO
Channel0RTT 60.7 # ECO
ChannelAmortized 19.1 # ACO^AES
ChannelAmortized_ChaCha 8.7 # ACO^Cha
Firewall_HS 150.1 # Firewall
DNS_Amortized_ChaCha 17.6 # DoT
DNS_Amortized_doh_get 48.1 # DoH GET
ODOH_Amortized 48.1 # ODoH

Note that the “# ...” are added here to map to the abbrevia-
tions used in Figures 6 and 7. The numbers obtained should
be very close to the ones above with perhaps slight variation
coming from the performance of xJsnark’s optimizer on dif-
ferent systems. Some of the values shown here are different
than that of the “Total” columns in Figures 6 and 7 as those
were rounded for presentation.

Experiment 2: Reproduce Times and SRS: The aim is to
reproduce the structured reference string sizes (SRS columns),
proving (Time columns) and verification time (always under
5 ms) for each circuit. This experiment can be repeated by run-
ning the script ./reproduce_times_srs (time required:
20 minutes) inside the gen/ directory.

The script outputs into file
columns_ptime_srs_vtime.txt, the contents of which
after a sample execution are as follows:

ChannelBaseline 92.7 s 1179 MB 2.6 ms
ChannelShortcut 15.6 s 148 MB 1.6 ms
Channel0RTT 8.4 s 79 MB 1.6 ms
ChannelAmortized 2.9 s 26 MB 1.7 ms
ChannelAmortized_ChaCha 1.4 s 13 MB 1.6 ms
Firewall_HS 21.2 s 206 MB 1.6 ms
DNS_Amortized_ChaCha 3.1 s 29 MB 2.1 ms
DNS_Amortized_doh_get 6.8 s 72 MB 2.6 ms
ODOH_Amortized 7.9 s 76 MB 2.6 ms

Proof generation is a randomized algorithm; the results
reported in the paper are the median of five runs. We have
observed variations of up to 15% for proving time and 2 ms
for verifier time, in either direction. The script above performs
just one run per circuit.

A.7 Experiment customization

We provide two additional scripts to reproduce
the above benchmarks for an individual circuit:
./generate_circuit DNS_Amortized_ChaCha and

./prove_and_verify DNS_Amortized_ChaCha , where
“DNS_Amortized_ChaCha” can be replaced with any of the
nine circuits.



A.8 Notes

Custom Inputs. As the circuit metrics we evaluate (gate
counts, parameters sizes and running times) are indepen-
dent of the actual input used to generate the proofs, input
customization isn’t required to reproduce our results. The
experiments generate valid proofs using fixed input files
(test.txt, test_doh.txt, test_wildcard.txt) pro-
vided in the gen/ directory. These files contain sample data
extracted from a real TLS 1.3 connection and a Merkle tree
blocklist of two million entries. We provide instructions in
our GitHub repository on generating sample data from new
DNS requests and custom Merkle trees.

Editing Circuit Descriptions. Our experiments generate
circuits using the Java files in the gen/src/ directory.
These are in turn generated from xJsnark’s custom lan-
guage files that are editable only with an IDE called MPS.
To inspect and edit our circuits, we recommend installing
the MPS IDE by following the instructions here in our
GitHub repository: https://github.com/pag-crypto/
zkmbs#installation-instructions-mps.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

https://github.com/pag-crypto/zkmbs#installation-instructions-mps
https://github.com/pag-crypto/zkmbs#installation-instructions-mps

	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.3.1 How to access
	A.3.2 Hardware dependencies
	A.3.3 Software dependencies

	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Version


