
A Artifact Appendix

A.1 Abstract

Minefield is a probabilistic undervolting protection for SGX
enclaves implemented via a compiler extension. The general
idea is to place instructions highly susceptible to undervolting
faults between regular instructions. In the artifact evaluation,
we include all the tools needed to reproduce each result of
the paper to follow the conclusion of our mitigation. First, we
provide the instruction finding framework that automatically
scans the x86 instruction set for instructions susceptible to
undervolting faults. Second, we show a benchmark for the
minimal time between voltage transitions. Third, we include
the compiler infrastructure to automatically generate hardened
enclaves and the required modifications to the SGX-SDK. Fi-
nally, we provide the tools to reproduce the performance, size,
compile-time, and detection rate benchmarks of Minefield.
Due to the nature of the paper, we require Intel hardware that
supports SGX and a runtime environment where possible data
corruption is acceptable. We recommend a clean installation
of Ubuntu 20.04, with Intel CPUs between the 6th and 10th

generation. Furthermore, if applicable, undervolting faults
will lead to repeated system freezes during the profiling phase.
Therefore, an automatic way to restart the system would be
beneficial.

A.2 Artifact check-list (meta-information)

• Program: The used programs are provided, or how to
install them is described.

• Compilation: We require a modified Clang 11 compiler.
Download and build scripts are provided.

• Transformations: We provide the patches used to allow
compilation of the SGX-SDK with Clang.

• Data set: We provide the framework to use the https:
//uops.info x86 instruction-set list.

• Run-time environment: Requires a native Linux instal-
lation that supports SGX, and we strongly recommend
Ubuntu 20.04. The provided installation scripts require
internet access.

• Hardware: Intel CPUs with SGX support between
the 6th and 10th generation and MSR 0x150 available.
Undervolting-based faults are highly dependent on the
actual hardware and even differ between cores on the
same CPU. We recommend one of the CPUs of the paper.

• Execution: For executing the benchmarks, we require
a stable frequency, isolated cores, a modified grub com-
mand line, and software-based undervolting.

• Security, privacy, and ethical concerns: Due to the
undervolting data-corruption can occur on the used
system.

• Metrics: The benchmarks report performance in itera-
tions per second, faulting points in mV, execution time
in seconds, code size in bytes, and detection rate factors.

• Output: The resulting outputs are CSV files. We pro-
vide visualization scripts where possible.

• Experiments: We include installation scripts and
readmes describing the process and how to execute the
benchmarks.

• How much disk space required (approximately)?: 4-
5 GB

• How much time is needed to prepare workflow (ap-
proximately)?: 3-4 hours

• How much time is needed to complete experiments
(approximately)?: 1-5 days depending on the depth of
the analysis.

• Publicly available (explicitly provide evolving
version reference)?: https://github.com/iaik/
minefield

• Code licenses (if publicly available)?: MIT

• Archived (explicitly provide DOI or stable ref-
erence)?: https://github.com/iaik/minefield/
tree/ae

A.3 Description

A.3.1 How to access

Check out the Git repository from https://github.com/
iaik/minefield and follow the provided readmes.

A.3.2 Hardware dependencies

We require Intel CPUs which support SGX and have an avail-
able software undervolting interface (MSR 0x150) available.
We recommend CPUs between the 6th and 10th generation
and recommend a desktop CPU shown in the paper. Our ex-
perience showed that the susceptibility to undervolting faults
is highly dependent on the used hardware and even differs
across cores from the same CPU. We recommend a system
with physical access as undervolting faults will repeatedly
crash the system and lead to system freezes.

https://uops.info
https://uops.info
https://github.com/iaik/minefield
https://github.com/iaik/minefield
https://github.com/iaik/minefield/tree/ae
https://github.com/iaik/minefield/tree/ae
https://github.com/iaik/minefield
https://github.com/iaik/minefield


A.3.3 Software dependencies

We strongly recommend Ubuntu 20.04 as it has official sup-
port for SGX, and we tested all the provided tools there.
The components of the paper have to be built from source,
hence the systems requires tools for compiling software
(build-essentials on Ubuntu). Access to MSRs via the
msr-tools interface is also necessary. Finally, we require a
setup that allows frequency pinning via cpupower to fix the
frequency at a given operating point during the undervolt.

A.3.4 Data sets

To speed up the finding of the susceptible instructions, we
provide our found faultable instruction data set in the reposi-
tory. Furthermore, we rely on the complete x86 instruction set
list from https://uops.info, which is automatically used
in the framework.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

During our experiments with undervolting, we observed data
corruption in recently used files. Therefore, we highly rec-
ommend a fresh installation with an operating system image
not used for personal or important data. We never observed
persistent damage on the hardware used for undervolting.
However, we cannot ensure that this is generally the case, but
we find it highly unlikely to damage the used hardware.

A.4 Installation

Follow the readmes in the top-level directory, which will guide
you through installing all the necessary tools and components
of the paper. The installation scripts are written in bash and
should automate most of the process. However, we cannot
rule out that some parts might need manual adjusting, and
therefore, knowledge of C, C++, python3, bash, and Makefiles
is beneficial. Furthermore, due to the enormous complexity
of SGX, some packages might need manual installation if not
found correctly.

A.5 Experiment workflow

After building the components for the benchmarks, they can
be executed via scripts for a given placement density. These
scripts should be executed with a fixed frequency to allow
a fair comparison between the runs. The benchmark results
are exported in the CSV format, and we provide additional
scripts to convert the measurements into relative overhead
percentages with respect to the baseline.

A.6 Evaluation and expected results
The reproduced results from Table 1 and Table 2 should show
that imul is, across multiple CPUs, the instruction most sus-
ceptible to faults. Some concrete instances might require
extended instructions to detect the fault at the highest under-
volting point correctly. With this assumption, the compiler
extension can rely on imul as trap instruction.

For the performance results, we should see a nearly lin-
ear performance decrease (Figure 8) and a rising code size
(Figure 10) when increasing the placement density. Some
benchmarks are more affected by the placement density than
others. For the mbedTLS (Figure 9) benchmark, some config-
urations with different key lengths and disabled redundancy
checks in the library itself show better performance as the
baseline depending on the number of leading zeros in the key.
The compile-time (Figure 11) should also rise with increas-
ing placement density. However, the absolute time increase
should be minimal.

Finally, we provide test enclaves to test the detection rate
of the mitigation (Figure 6) in the worst-case scenario and a
more realistic scenario when protecting mbedTLS (Figure 7).

A.7 Experiment customization
Since the undervolting offset is highly dependent on the hard-
ware and even the core executing the code, some benchmarks
might need manual adjustment. The instruction finding frame-
work automatically detects system freezes when using our
remote system with a remote power switch. The overall run-
time of the performance benchmark can be adapted via the
number of runs.

A.8 Notes
Undervolting faults are highly dependent on the used systems.
Even our two identical systems from Table 2 show different
faulting behavior. Furthermore, we observed different under-
volting offsets on cores of the same CPU. Therefore it is likely
that the undervolting-related results from the artifacts differ.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

https://uops.info

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


