
A Artifact Appendix

A.1 Abstract

FUZZWARE is a firmware emulation and fuzzing prototype
which makes use of symbolic execution to model MMIO
accesses. In our experiments, we fuzz tested different sets of
samples (synthetic, state-of-the-art, and new targets for CVE
discovery). Based on the experiment stage (analogous to our
paper’s evaluation subsections), we collect additional data
such as modeling statistics, job timings, unit test coverage,
and code coverage.

As a fuzzing work, our experiments require computational
resources. At a minimum (for a single-iteration evaluation
of our core experiments instead of the 5/10 iterations that
we performed), you should expect to perform 42 CPU days
worth of fuzzing time on a single Linux system during the
evaluation period (21 for the state-of-the-art comparison only).
For the easiest (and repeated) reproduction, we recommend
41 dual-core Ubuntu cloud VMs (2 CPUs / 4-6GB RAM / 64
GB storage) which will run for 11 days to perform the full
replication. Other setups are possible, but will require a bit of
tinkering with experiment run scripts.

A.2 Artifact check-list (meta-information)
• Algorithm: Locally-scoped Dynamic Symbolic Execution

• Program: Fuzzware builds on top of AFL/AFL++, unicorn
engine, angr (8.19.10.30), Python < 3.10 (due to angr version)

• Compilation: clang

• Binary: Firmware samples used for evaluation

• Data Set: Included: P2IM Unit Tests, P2IM Targets, uEmu
Targets, Artificial Password Firmware Samples, Contiki-NG &
Zephyr-OS Target Samples

• Run-time environment: Linux, Docker

• Hardware: The recommended setup for full replication re-
quires 41 dual-core Ubuntu cloud VMs.

• Metrics: Unit Test Coverage, Model Generation Timings,
MMIO Overhead Elimination Statistics, Code Coverage,
Reached Bugs

• Output: Included: Crashes (binary files), Generated: Fuzzing
Inputs (binary files), MMIO Models (text files), statistics (text
files), GNU plots (PNG files)

• Experiments: bash scripts, readmes

• How much disk space required (approximately)?: Recom-
mended setup: 25 GB of local storage for collected experiment
results, and 41 Ubuntu cloud machines with 64GB storage each.
For a fully local setup (run script customizations are required),
100GB should suffice to hold all experiment data.

• How much time is needed to prepare workflow (approxi-
mately)?: 4h

• How much time is needed to complete experiments (ap-
proximately)?: 5-10 days (on 41 Ubuntu cloud machines, to-
tal CPU time: 320 days for full experiment repetition count,
42 days for a single iteration)

• Publicly available (explicitly provide evolving version ref-
erence)?: Evolving: https://github.com/fuzzware-fuzzer

• Publicly available? Yes. Stable version: sec22-ae-accepted
• Code licenses (if publicly available)?: Apache-2.0
• Data licenses (if publicly available)?: Apache-2.0
• Archived (explicitly provide DOI or stable reference)?:

10.5281/zenodo.6499215

A.3 Description
A.3.1 How to access

We release both the research prototype, as well as all experiments
and data as open source on GitHub at the following two locations:

• https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-
accepted

• https://github.com/fuzzware-fuzzer/fuzzware-
experiments/tree/sec22-ae-accepted

A.3.2 Hardware dependencies

For the experiment reproduction, x86 computation resources are re-
quired. For the easiest reproduction (no customization of run scripts),
41 dual-core Ubuntu cloud instances are recommended (2 cores, 4-
6GB RAM, 64GB storage). With run script customizations, other
hardware setups that allow for 320 days worth of fuzzing compu-
tation time within a reasonable time frame can be used. In case
a single-run reproduction is deemed sufficient, a total of 42 days
worth of computation time (plus some compute for trace generation
and metric aggregation) are required.

A.3.3 Software dependencies

We recommend Linux/Docker as the experiment platform for a re-
producible setup of all dependencies. For a seemless reproduction,
we further recommend an Ubuntu LTS release (e.g., 18.04 or 20.04).
Note that the version of angr which is pinned for the evaluation
constrains the python version to be <3.10, which means that Ubuntu
LTS releases of coming years may require installing an older version
of python than are the default for future Ubuntu releases.

A.3.4 Data sets

We include all required firmware samples for running the experi-
ments in the GitHub repository. In more detail, we include a list
of target firmware images from previous work (P2IM, uEmu), and
compiled additional targets for bug discovery, which are present as
pre-built binaries in the fuzzware-experiments repository.

To reproduce our newly introduced target firmware samples, we
further provide build scripts for all relevant targets.

A.3.5 Models

We do not include the MMIO models generated by Fuzzware. These
will be generated by the prototype on-the-fly during the experiments.

https://github.com/fuzzware-fuzzer/fuzzware/releases/tag/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-submission
https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-submission
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-submission
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-submission
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted


A.3.6 Security, privacy, and ethical concerns

The fuzzware-experiments repository contains crash cases for secu-
rity critical bugs in ZephyrOS and Contiki-NG. All corresponding
vulnerabilities have been disclosed to the maintainers and patches
were developed.

A.4 Installation
Installing individual instances of Fuzzware is done via the
build_docker.sh script (for a Docker-based setup), and via the in-
stall_local.sh script (for a native setup), which are both located in
the fuzzware repository.

To ease the setup process for the experiments, we also created
scripts in the fuzzware-experiments repository. to remotely install
SSH-accessible Ubuntu instances. The corresponding script can be
found in ssh_hosts_install.py. The README files within the reposi-
tory and comments in the source code are meant to provide additional
information to allow for the use of scripts and the customization of
the installation process.

The recommended setup is to create 41 Ubuntu LTS hosts with
2 cores, 6GB RAM, and 64 GB of disk space each. This could be
reduced 4 GB RAM and 32 GB disk space in case costs require
minimizing.

A.5 Experiment workflow
The data required to conduct each experiment is contained within
the fuzzware-experiments repository. The repository is organized in
a way such that each subdirectory corresponds to a particular section
in the paper. The mapping from directory to paper can be found in
the top-level README.md file.

In essence, each experiment entails a 24-hour fuzzing run of the
target (invoked via the "fuzzware pipeline" utility), which creates a
fuzzware-project directory. This directory contains the state of the
MMIO model configurations, as well as inputs that were generated
by fuzzers over the span of the fuzzing run. In a second step, metrics
such as code coverage are aggregated from this raw data. Finally, in
a third step, depending on the experiment, additional aggregation is
performed over the full set of fuzzing runs belonging to the given
experiment. This aggregation collects a summary of the data as can
be found in the respective section of the paper. Below we describe
the workflow for each of these experiments.
(1) PW discovery & Unit Tests. For the first experiment, the fol-
lowing workflow can be used to reproduce the experiments:

1. Make sure to have installed fuzzware on cloud hosts via
ssh_hosts_install.py. If 41 dual-core hosts have been installed
with the expected naming conventions, no modifications to run
scripts should be required.

2. Navigate to 01-access-modeling-for-fuzzing/pw-discovery/

3. Run the experiments on the hosts by executing the
ssh_based_kickoff_experiments.sh script

4. The experiments are spawning tmux sessions on the remote
machines, so tmux list-sessions should provide a status on
running experiments.

5. Collect the results from the fuzzing runs after the experiments
have been finished (10 repetitions of 24 hour runs). This is
done via the ssh_based_collect_results.sh script. The fuzzers

shut themselves down automatically, so the experiment does
not have to be cancelled manually. You may run the script at
any time to collect intermediate results, but for the final result
it is best to wait until the fuzzer has shut itself down. You may
check whether the experiment is still running by checking the
corresponding tmux session. Expect the experiments to run for
10-11 days including trace and per-run metrics generation.

6. Compute summary metrics via the run_metric_aggregation.py
script.

For the P2IM unit tests of experiment (1), you may run 01-access-
modeling-for-fuzzing/p2im-unittests/run_experiment.sh and observe
the stdout output.
(2) State-of-the-art comparison. For the second experiment, the
following workflow can be used to reproduce the experiments:

1. Same as for experiment (1).

2. Navigate to 02-comparison-with-state-of-the-art

3. Same as for experiment (1).

4. Same as for experiment (1).

5. Same as for experiment (1), but with 5 repetitions, 5-6 days of
runtime, and using ssh_based_collect_results.sh.

6. Same as for experiment (1).

Note that experiments (1) and (2) are meant to be run in parallel
in case 41 hosts are present, as experiment (1) is pre-configured to
use 20 instances, while experiment (2) is pre-configured to use the
remaining 21 instances.
(3) CVE discovery. For the third experiment, we tested the targets in
large-scale fuzzing campaigns. As such, single 24-hour runs for repli-
cation do not make sense in this context. Instead, we provide crashing
proof-of-concept inputs which were all generated in fuzzing runs,
alongside with README’s giving context on each POC. An example
of this is 03-fuzzing-new-targets/zephyr-os/prebuilt_samples/CVE-
2020-10065/POC/ within the fuzzware-experiments repository. You
can still run the different CVE targets using the fuzzware pipeline
utility (please refer to fuzzware pipeline -h for more documentation).
We built each target such that previously known bugs are fixed (e.g.,
bugs of related CVEs), and crashing inputs generated via fuzzing
should have a high likelihood to trigger the CVE bug.
(4) Crash Analysis. For the fourth experiment, we provide crashing
POC inputs alongside some documentation on each input. The exper-
iment’s README at 04-crash-analysis/README.md contains an
overview of how POC inputs correspond to the previous experiments,
and how they can be run in Fuzzware.
A note on the multi-host setups. The base setup for (1) and (2)
expect that the experiments are run in a distributed fashion on mul-
tiple hosts. In case your hardware resources do not allow for this
multi-host setup, it is also possible to perform the same experiments
on a smaller number of hosts that have access to more CPU cores.
We provide scripts to run the experiments locally in the form of
run_experiment.sh scripts within the respective experiment directo-
ries. As we cannot predict the exact computation resources (one very
large host, a handful of medium-sized hosts, ...), these scripts are con-
figured to run without parallelization by default. This means without
modification, simply running the different run_experiment.sh scripts
will take nearly a year to complete. However, we built parallelization
and target specification options via environment variables into these
scripts, such that the run_experiments.sh scripts should aid you in

https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware/blob/sec22-ae-accepted/run_docker.sh
https://github.com/fuzzware-fuzzer/fuzzware/blob/sec22-ae-accepted/install_local.sh
https://github.com/fuzzware-fuzzer/fuzzware/blob/sec22-ae-accepted/install_local.sh
https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/ssh_hosts_install.py
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/README.md
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/ssh_hosts_install.py
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/ssh_based_kickoff_experiments.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/ssh_based_collect_results.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/run_metric_aggregation.py
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/p2im-unittests/run_experiment.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/01-access-modeling-for-fuzzing/p2im-unittests/run_experiment.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/02-comparison-with-state-of-the-art
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/02-comparison-with-state-of-the-art/ssh_based_collect_results.sh
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/03-fuzzing-new-targets/zephyr-os/prebuilt_samples/CVE-2020-10065/POC
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/03-fuzzing-new-targets/zephyr-os/prebuilt_samples/CVE-2020-10065/POC
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/04-crash-analysis/README.md


running the experiments according to a given hardware environment.
Please refer to the script documentation for information on how to
parallelize running the experiments within a host.

A.6 Evaluation and expected results

The main claims of the paper are:

1. Fuzzware employs a lightweight MMIO modeling tech-
nique.

2. Fuzzware’s MMIO models reduce the fuzzer’s input
space considerably.

3. Fuzzware’s MMIO models are applicable to a wide vari-
ety of firmware and hardware platforms.

4. Fuzzware outperforms the state-of-the-art.

5. Fuzzware’s is able to identify previously unknown bugs.

The key results reported in the evaluation of the paper
which support our claims are as follows:

1. Fuzzware’s model generation cost an average of 6.34
minutes over 24-hour runs (6 seconds per model) for the
pw-discovery data set.

2. On the same data set, Fuzzware achieves a minimum
input elimination of 49.3% and a maximum 83.4%.

3. Fuzzware passes all of the valid P2IM unit tests.

4. In terms of basic block coverage, Fuzzware achieves on
average 44% more coverage compared to P2IM and
61% more compared to uEmu.

5. Fuzzware’s fuzzing campaigns yielded multiple previ-
ously unknown bugs in Zephyr-OS and Contiki-NG.

6. The majority of crashing inputs found by Fuzzware are
true positives.

These claims are supported by the data generated when
following the experiments in Section A.5. Note that the
README file in each experiment sub-directory should pro-
vide additional context on what data is collected, where to
find it, and what the expected results are.

After running the experiments, you should have access to a
set of fuzzware-project directories that contain aggregated
data. As an example, for the ARCH_PRO target of experiment
(1), a directory fuzzware-project-run-01 inside 01-access-
modeling-for-fuzzing/pw-discovery/ARCH_PRO/ should
have been automatically created. Similarly, for the P2IM/PLC
sample of experiment (2), fuzzware-project-run-01 should be
present in 02-comparison-with-state-of-the-art/P2IM/PLC/.
Running the run_metric_aggregation.py scripts should now

output data in a similar representation to what can be found
in the paper with regards to claim 1–41.

For claim 5–6, you may replay the given POC inputs and
verify emulation behavior. In case you fuzz-tested the CVE
targets with sufficient computation resources, you can also
manually analyze the crashes which are produced in the re-
spective fuzzware-project directories. We further include em-
piric timings for the first occurrence of according crashes
in our experiments in 03-fuzzing-new-targets/README.md,
alongside numbers on how many cores we used for the crash
reproduction. Information on the reported bugs can be found
in 03-fuzzing-new-targets/bug-details.

A.7 Experiment customization
In case your computation resources differ from our recom-
mended setup, then modifications to the run scripts may be
required to achieve experiment parallelization which matches
your available setup. Please refer to the scripts’ sources and
README’s for more information.

A.8 Notes
Due to the probabilistic nature of fuzzing, many of the num-
bers will differ in each run.

Furthermore, our basic block coverage collection is slightly
different from the way it is collected in original publications
for uEmu and P2IM. These papers report QEMUs translated
blocks as reached basic blocks. However, due to the intrinsics
of this emulator, these do not necessarily correspond to actual
basic blocks. In our experiment, we match the entry of trans-
lated blocks to a list of actual basic blocks. While we include
these allow lists in the repositories, you can generate them on
your own by:

1. Opening the target’s ELF file in IDA

2. While loading the binary, choosing ARMv7-M as the
processor option

3. Running scripts/idapython/idapy_dump_valid_basic_block_list.py
which is included in the fuzzware repository.

4. Execution function dump_bbl_starts_txt().

You should now find a valid_basic_blocks.txt file next to the
opened ELF file.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

1Note that we only include an automated experiment setup for Fuzzware,
and not for rehosting frameworks we compare against.

https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/ARCH_PRO
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/01-access-modeling-for-fuzzing/pw-discovery/ARCH_PRO
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/02-comparison-with-state-of-the-art/P2IM/PLC
https://github.com/fuzzware-fuzzer/fuzzware-experiments/blob/sec22-ae-accepted/03-fuzzing-new-targets/README.md
https://github.com/fuzzware-fuzzer/fuzzware-experiments/tree/sec22-ae-accepted/03-fuzzing-new-targets/bug-details
https://github.com/fuzzware-fuzzer/fuzzware/blob/sec22-ae-accepted/scripts/idapython/idapy_dump_valid_basic_block_list.py
https://github.com/fuzzware-fuzzer/fuzzware/tree/sec22-ae-accepted

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


