
C Artifact Appendix

C.1 Abstract
This artifact contains a functional version of PolyCruise and
the necessary dataset for the evaluation. To facilitate the usage
of this artifact, we have prepared a Docker image with the
necessary components to execute the artifact and visualize
the result. Artifact users can compare the results obtained
from executing this artifact with those presented in our paper.
It is recommended that the host machine has at least 16GB
memory and 32GB hard disk space.

C.2 Artifact check-list (meta-information)
• Algorithm: No
• Program: Yes
• Compilation: No
• Transformations: No
• Binary: No
• Model: No
• Data set: Contained in the package
• Run-time environment: Ubuntu 18.04
• Hardware: No
• Run-time state: No
• Execution: No
• Security, privacy, and ethical concerns: None
• Metrics: Please refer to our paper
• Output: Textual information on the terminal
• Experiments: Necessary scripts provided
• How much disk space required (approximately)?: 10 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 10 min
• How much time is needed to complete experiments (approx-

imately)?: 20 min
• Publicly available (explicitly provide evolving version refer-

ence)?: Yes, https://github.com/Daybreak2019/PolyCruise
• Code licenses (if publicly available)?: Yes
• Data licenses (if publicly available)?: Yes
• Archived (explicitly provide DOI or stable reference)?: Yes,

https://github.com/Daybreak2019/PolyCruise/releases/tag/v3.0

C.3 Description
C.3.1 How to access

• Download the Docker image for this artifact

docker pull daybreak2019/polycruise:1.1

• Download the source code of PolyCruise

git clone https://github.com/Daybreak2019/PolyCruise.git

C.3.2 Hardware dependencies

The host machine may at least need 16GB memory and 32GB
hard disk spaces.

C.3.3 Software dependencies

PolyCruise is mainly developed on LLVM 7.0 and Python 3.7.
Other software dependencies such as libxml and cmake are
also necessary to build the project. For ease of use of Poly-
Cruise, we have prepared a Docker image with all software
dependencies installed.

Moreover, real-world benchmarks have their own partic-
ular/additional dependencies. Hence, to fully reproduce the
results in the paper, users should install these dependencies
successfully and ensure each benchmark’s test cases can pass.
For demonstration purposes, we use Cvxopt as a concrete
example of such benchmarks and have installed all of its de-
pendencies in the Docker image.

More specifically, we note that the Docker image includes
all the libraries/framework underlying PolyCruise, thus it can
be used for experimenting with other real-world subjects as
well (i.e., saving the time/trouble for installing ubuntu, llvm,
etc.) On the other hand, since our real-world subjects are
sizable, including the complete compilation and run-time en-
vironment (e.g., all the third-party library dependencies) for
all of them in the single Docker image would make it clumsy
to deploy conveniently. Using a traditional virtual machine
would aggregate this concern since they are even heavier. This
is why we chose to include the setup for one such subject only
inside the image at this time.

C.3.4 Data sets

PolyCruise is published with a set of micro-benchmarks in-
cluded inside its code repository. The real-world benchmarks
can be retrieved from GitHub.

C.3.5 Models

N/A.

C.3.6 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns with using
this artifact.

C.4 Installation

• Step 1: Download the Docker image and run a Docker
container based on the image

docker pull daybreak2019/polycruise:1.1

docker run -it daybreak2019/polycruise:1.1

https://github.com/cvxopt/cvxopt


Table 1: Effectiveness results of PolyCruise on PyCBench,
including #inter-language paths (INT-LP), #Intra-language
paths (ITR-LP), #false positives (FP), #false negatives (FN)

Group #INT-LP #ITR-LP #FN #FP
General flow 10 4 0 0
Global flow 9 0 0 0
Filed sensitivity 8 0 0 2
Object sensitivity 9 2 0 1
Dynamic invocation 4 0 0 0
Total 40 6 0 3

• Step 2: Clone the source of PolyCruise and build the
project within the container

cd /root/
git clone https://github.com/Daybreak2019/PolyCruise.git
cd PolyCruise
./build.sh

C.5 Experiment workflow
We provided scripts for automating all the experiments dur-
ing the evaluation. Specifically in this artifact, we setup the
environment for the experiments on the micro-benchmarks
and a real-world Python-C program Cvxopt.

• Experiment on micro-benchmarks

In this step, we can run all micro-benchmarks together
with the following script:

cd PolyCruise/PyCBench
./RunTest.sh

If we want to run the micro-benchmarks one by one
manually, we can switch to the appropriate directory and
execute the script, for example:

cd PolyCruise/PyCBench/GlobalFlow/3_leak_PyClang
./build.sh

• Experiment on Cvxopt

cd PolyCruise/Experiments/scripts/cvxopt
./build.sh build

The parameter "build" indicates the script to instrument
and install Cvxopt before running the tests.

C.6 Evaluation and expected results
C.6.1 Evaluation on micro-benchmarks

We use micro-benchmarks (referred to as PyCBench in our
research paper) to evaluate the effectiveness of PolyCruise,
and it achieved 93.5% precision on PyCBench. The results
are summarized in Table 1. Out of all of the 46 cases in
PyCBench, PolyCruise succeeded in 43 and failed in 3.

Reproduction.

After building PolyCruise following the steps in Section C.4,
use the following command to run PolyCruise on PyCBench:
cd PolyCruise/PyCBench
./RunTest.sh

Expected results.

Obtain the output in the end:
"Finish test, (Correct/Total) = (43, 46)"

Failed cases:

PyCBench/FieldSensitivity/7_leak_PyClang
PyCBench/FieldSensitivity/8_int-overflow_PyClang
PyCBench/ObjectSensitivity/11_leak_Python

C.6.2 Evaluation on Cvxopt

To verify the capability of cross-language vulnerability de-
tection, we also demonstrate evaluating PolyCruise on real-
world Python-C programs. In this artifact, we take Cvxopt as
an example to exemplify our claim, PolyCruise succeeded in
detecting real-world bugs and got one CVE assigned (Table 6
of our paper).

Reproduction.

Use the following command to build and run tests on Cvxopt:
cd PolyCruise/Experiments/scripts/cvxopt
./build.sh build

Expected results.

Report cross-language information flow paths of the
incomplete comparison vulnerability as shown in Fig-
ure 1.

Figure 1: Example of result on Cvxopt

C.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt
https://github.com/cvxopt/cvxopt

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Evaluation on micro-benchmarks
	Evaluation on Cvxopt

	Version


