
A Artifact Appendix

A.1 Abstract
The artifact reproduces the results shown in Section 5 and
the exploits showcased in Section 6. More specifically, we
provide code to: (i) test if a system is vulnerable to BHI,
(ii) verify if out-of-place BTI is possible, (iii) validate the
results in Table 3, (iv) and verify the two exploits (inter- and
intra- mode). The artifacts for x86-64 have been validated on
Intel Core i7-10700K and Xeon Silver 4310 running Ubuntu
20.04 with Linux kernel 5.14, while the Arm results have
been verified on the performance cores of a Google Pixel 6
(Cortex X1). All our source code is available on GitHub at
https://vusec.net/projects/bhi-spectre-bhb
Following is the directory tree of the artifact:

bhi-spectre-bhb
re

x64
bhi_test (Section 5.1)
bhb_brute_force (Section 5.2)
bhb_size (Section 5.3)
bhb_control (Section 5.3)

arm
bhi_test (Section 5.1)
bhb_brute_force (Section 5.2)

pocs
inter_mode (Section 6.2)
intra_mode (Section 6.3)

tools

A.2 Artifact check-list (meta-information)
• Experiments: We provide self contained experiments match-

ing the results of specific sections.

• Compilation: gcc, aarch64-linux-android31-clang, nasm.

• Binary: One binary per experiment in each directory.

• Run-time environment: For x86-64 experiments: Ubuntu
20.04 with Linux kernel 5.14. We provide the default Ubuntu
kernel .config file (at the time of writing) on GitHub. For
arm experiments: Android 12 with kernel 5.10. For both archi-
tectures, bhi_test uses a customized kernel.

• Hardware: x86-64 results were validated on Intel Core i7-
10700K and Xeon Silver 4310. Arm results were validated on
a Google Pixel 6.

• Run-time state: Set Linux CPUFreq governor to
performance.

• Execution: Each folder contains a ./run.sh script to run
the experiment. When additional steps are required, this is
specified in the README.

• Output: Each experiment provides only textual output. We
describe in details the expected outcome for each experiment
in Section A.6 and in the READMEs available in the corre-
sponding directory.

• How much disk space required (approximately)?: 8GB
are sufficient if the experiments are run using provided kernel
images. Otherwise 80GB are needed.

• How much time is needed to prepare workflow (approxi-
mately)?: Few minutes in total. Each experiment and their cor-
responding environment can be set up with a single ./run.sh
bash script.

• How much time is needed to complete experiments (approx-
imately)?: Approximately 5 minutes per experiment to run
and verify the results of each experiment in re/ and in pocs/.

• Publicly available (explicitly provide evolving version ref-
erence)?: All the source code is available at https://vusec.
net/projects/bhi-spectre-bhb.

• Code licenses (if publicly available)?: Apache License 2.0.

• Archived (explicitly provide DOI or stable reference)?:
The ae_final tag contains the final stable artifacts. Avail-
able at https://github.com/vusec/bhi-spectre-bhb/
releases/tag/ae_final.

A.3 Description
A.3.1 How to access

All the source code is available at https://github.com/
vusec/bhi-spectre-bhb/releases/tag/ae_final. Use
the version under the tag ae_final for reproducing these re-
sults.

A.3.2 Hardware dependencies

The experiments in re/x64/ were tested on all the Intel CPUs
in Table 2. These also run on AMD, however they will not
yield any interesting result since these systems are not vul-
nerable. The experiments in re/arm/ were validated on a
Google Pixel 6. The two end-to-end exploits (pocs/) were
tested against the Intel Core i7-10700K and Xeon Silver 4310.
Some adjustments to the cache eviction strategies and timings
may be required on different Intel CPUs.

A.3.3 Software dependencies

We rely on standard build tools available in the Ubuntu pack-
age manager: build-essentials, nasm, debootstrap and
qemu-system-x86. We also rely on msr-tools to read the
msr specifying the availability of IBRS and eIBRS in a sys-
tem. For the bhi_test experiments a modified Linux kernel
is required. The kernel image and the source patch file are
available as part of the artifact.

A.4 Installation
You can build all the artifacts from their corresponding direc-
tory using the following command depending on the target:

make UARCH=INTEL_10_GEN | INTEL_11_GEN | PIXEL_6

https://vusec.net/projects/bhi-spectre-bhb
https://vusec.net/projects/bhi-spectre-bhb
https://vusec.net/projects/bhi-spectre-bhb
https://github.com/vusec/bhi-spectre-bhb/releases/tag/ae_final
https://github.com/vusec/bhi-spectre-bhb/releases/tag/ae_final
https://github.com/vusec/bhi-spectre-bhb/releases/tag/ae_final
https://github.com/vusec/bhi-spectre-bhb/releases/tag/ae_final

The only exception are bhi_test experiments. In order
to run these, you need to first set up a VM with a custom
Linux kernel (x86-64), or install a customized kernel directly
(Arm). The kernel images are available as part of the artifact,
as well as the patch file required to compile the kernel from
source with our modifications. For x86-64, you can set up
and start the VM in a few minutes following the instructions
in the README found inside the re/x64/bhi_test/vm di-
rectory, while for Arm it is sufficient to boot the image using
fastboot boot boot.img.

A.5 Experiment workflow
You can then execute every experiment by simply executing
the ./run.sh script in each directory.

A.6 Evaluation and expected results
In our work we make three main claims: (i) We show how
Intel eIBRS and Arm CSV2 are incomplete solutions against
cross-privilege BTI attacks, and introduce Branch History In-
jection (BHI) as a new primitive to build such attacks; (ii) We
leverage BHI to build an end-to-end exploit on Intel systems
deploying eIBRS (i.e., inter-mode); (iii) And we show that
even when cross-privilege history injection is not possible
kernel-to-kernel exploits (i.e., intra-mode) are still practical.

The experiments in the re/ directory are meant to validate
claim (i) for both x86-64 and Arm architectures.

The two end-to-end exploits in the pocs/ directory are
meant to validate claims (ii) and (iii).

We now describe the goal and expected output for each of
these experiment. More details are available in the READMEs
in each folder. The first experiments are meant to verify the
claims on Intel CPUs.
• (x64) bhi_test.

– Goal. Verify if the system is vulnerable to BHI.
– Implementation. As described in Algorithm 1.
– Results. On vulnerable systems we expect F+R to pro-

vide a hit rate > 85%.

• (x64) bhb_brute_force.
– Goal. Verify if we can carry out out-of-place BTI.
– Implementation. As described in Figure 4, we use two

different call sites and randomize the preceding jump
chains.

– Results. On vulnerable systems we expect stable colli-
sions (F+R hit rate > 85%) and 214 iterations on average
before finding a collision on Intel 10th gen CPUs—the
iterations become 217 for Intel 11th gen.

• (x64) bhb_size.
– Goal. We want to recover the number of branches the

BHB can keep track of.
– Implementation. As described in Figure 5.

– Results. We should observe predictions for n = 29 and
n = 66 on the Intel Core i7-10700K and Xeon Silver
4310 respectively.

• (x64) bhb_control.
– Goal. We want to recover the minimum number of

branches under control by the attacker to generate ar-
bitrary BTB collisions.

– Implementation. As described in Figure 7.
– Results. We should observe collisions for k = 9 and k =

8 on the Intel Core i7-10700K and Xeon Silver 4310
respectively.

• (Arm) bhi_test.
– Goal. Verify if the system is vulnerable to BHI.
– Implementation. As described in Algorithm 1.
– Results. On the Cortex X1 we expect F+R to provide a

hit rate > 90%.

• (Arm) bhb_brute_force.
– Goal. Verify if we can carry out out-of-place BTI.
– Implementation. As described in Figure 4, we use same

or different call sites and randomize the preceding jump
chains.

– Results. On the Cortex X1 we expect stable collision
(F+R hit rate > 90%) for in-place BTI, while no collision
for out-of-place BTI.

• (PoC) inter_mode.
– Goal. Showcase an end-to-end exploit leveraging BHI

to perform cross-privilege mistraining and eBPF to read
arbitrary kernel memory.

– Implementation. As described in Section 6.2.
– Results. It should take less than a minute to build an

eviction set and then start leaking kernel memory.

• (PoC) intra_mode.
– Goal. Showcase an intra-mode exploit where we take

advantage of eBPF to perform both mistraining and mis-
prediction.

– Implementation. As described in Section 6.3.
– Results. It should take less than a minute to build an

eviction set and then start leaking kernel memory.

A.7 Experiment customization
Our reverse engineer programs, as well as our exploit, can also
be run on different hardware with a suitable configuration. In
particular, the tool fr_checker can be used to find the correct
F+R threshold, and the file common/targets.h to specify the
microarchitectural parameters.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version

