
A Artifact Appendix

A.1 Abstract
We propose KHALEESI, a machine learning (ML) approach
that captures the essential sequential context needed to effec-
tively detect advertising and tracking request chains. We re-
lease KHALEESI’s classification code, ML model, browser ex-
tension, and data sets. Classification code is written in Python
3.6, the ML model is trained using Scikit, the browser exten-
sion is written in JavaScript/HTML, and the data is crawled
using OpenWPM.

A.2 Artifact check-list (meta-information)
• Binary: A browser extension to block advertising and tracking

request chains. The extension is designed and tested in Mozilla
Firefox.

• Model: ML model to detect advertising and tracking request
chains. Released ML model was trained on request chains from
homepages of Alexa top-10K websites.

• Data set: Data sets to train and test ML model. We release
crawls of homepages, home and sub pages, home and sub
pages with cookies blocked, and home and sub pages with
browser spoofed as Safari. All data sets are crawls of Alexa
top-10K websites. The data contains requests, responses, and
JS execution.

• Run-time environment: Scripts can be run using Python 3.6
and above. The code was tested on Ubuntu 16.04.7 LTS.

• How much disk space required (approximately)?: We rec-
ommend a disk space of ∼100GB to train the classifier. The
browser extension does not have any disk space constraints.

• How much time is needed to complete experiments (ap-
proximately)?: The classifier can be trained in ∼ 10 hours.
The browser extension blocks the ads instantaneously.

• Publicly available (explicitly provide evolving version ref-
erence)?: KHALEESI’s code, data, and browser extension is
available at https://uiowa-irl.github.io/Khaleesi/.

• Archived (explicitly provide DOI or stable reference)?:
KHALEESI’s code, data, and browser extension is available
at https://github.com/uiowa-irl/Khaleesi/tree/
bd28513878a363b39b0ee9e7a6a4350f71672912

A.3 Description
A.3.1 How to access

KHALEESI’s code, ML model, and browser extension are avail-
able on Github at: https://uiowa-irl.github.io/Khaleesi/.
Data sets are available on Zenodo at: https://doi.org/10.5281/
zenodo.6084582.

A.3.2 Hardware dependencies

KHALEESI ML model was trained on a machine with 16 cores and
96 GB RAM. We recommend a disk space of ∼100 GB to train the
classifier. The model can be tested on hardware with less resources.

A.3.3 Software dependencies

KHALEESI browser extension was designed and tested on Mozilla
Firefox. We trained and tested KHALEESI ML model on Ubuntu
16.04.7 LTS.

A.3.4 Data set dependencies

KHALEESI is trained on data set crawled through OpenWPM version
0.10.0. The code might require some minor modifications to process
data from newer versions of OpenWPM.

A.4 Installation
We provided instructions to run KHALEESI on Github.

A.5 Experiment workflow
In addition to instructions on Github, we provide detailed instruc-
tions to run the code below:

A.5.1 Training & Testing ML model

We list the step-by-step process to train and test KHALEESI’s ML
model below:

1. Data collection: Collect network and JavaScript initiated re-
quests using OpenWPM.

2. Request chain construction: Organize network and JavaScript
initiated requests into chains. Request chains can be con-
structed with HTTP and JavaScript chain construction scripts.

3. Request chain labeling: Once constructed, label request chains
using EasyList (EL) and EasyPrivacy (EP) filter lists. Use filter
list labeling script and EL/EP filter lists to label the chains.

4. Feature extraction and transformation: After labeling, extract
features from the request chains using using feature extraction
script and encode them using feature encoding script.

5. Model training: Since, KHALEESI relies on previous confi-
dence as a feature, extract the previous confidence for each
request in a chain before training the final model. The previous
confidence can be extracted using compute previous confidence
script. The last block of previous confidence script stores the
final trained model. An already trained model is available in
data directory.

6. Testing the model: KHALEESI uses 10-fold cross validation to
test the data sets. The encoded features with previous confi-
dence can be tested using test classifier script and the accuracy
can be computed using compute accuracy script.

A.5.2 Analysis of Request Chains

We release scripts to analyze cookie syncing and bounce tracking
instances in request chains. Use the cookie syncing and bounce
tracking scripts to identify cookie syncing and bounce tracking
instances, respectively.

https://scikit-learn.org/stable/
https://github.com/openwpm/OpenWPM
https://uiowa-irl.github.io/Khaleesi/
https://github.com/uiowa-irl/Khaleesi/tree/bd28513878a363b39b0ee9e7a6a4350f71672912
https://github.com/uiowa-irl/Khaleesi/tree/bd28513878a363b39b0ee9e7a6a4350f71672912
https://uiowa-irl.github.io/Khaleesi/
https://doi.org/10.5281/zenodo.6084582
https://doi.org/10.5281/zenodo.6084582
https://github.com/openwpm/OpenWPM
https://uiowa-irl.github.io/Khaleesi/
https://github.com/uiowa-irl/Khaleesi/blob/main/code/http_chain_builder_json.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/js_chain_builder_json.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/filter_lists_labeling.ipynb
https://github.com/uiowa-irl/Khaleesi/tree/main/ground_truth
https://github.com/uiowa-irl/Khaleesi/blob/main/code/feature_extraction.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/encode_features.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/compute_previous_confidence.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/data/final_clf.joblib
https://github.com/uiowa-irl/Khaleesi/blob/main/code/test-classifier.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/compute-accuracy.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/cookie_syncing_heuristic.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/bounce_tracking_investigation.ipynb
https://github.com/uiowa-irl/Khaleesi/blob/main/code/bounce_tracking_investigation.ipynb


A.5.3 Browser Extension

To add KHALEESI to Firefox, enter about:debugging in the URL
bar, click This Firefox, click Load Temporary Add-on, navigate to
the extension’s directory and open manifest.json. To view the re-
quests blocked by KHALEESI, open extension’s console by clicking
Inspect in about:debugging or see the network tab in the Firefox
Developer Tools.

A.6 Evaluation and expected results
Training & Testing ML Model: Upon successful execution, the work-
flow should produce a trained ML model and output its accuracy.

Analysis of Request Chains: Upon successful execution, the scripts
should list the cookie syncing and bounce tracking instances in
request chains.

Browser Extension: After installation, the browser extension should
block advertising and tracking request chains.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data set dependencies

	Installation
	Experiment workflow
	Training & Testing ML model
	Analysis of Request Chains
	Browser Extension

	Evaluation and expected results
	Version


