
A Artifact Appendix

A.1 Abstract
The artifact provided is the implementation of ARBITER
framework along with the VD implementations for 4 CWE
types and for the Juliet data set. The framework, as well as,
the VD templates are written in Python. The artifact contains
a helper script written in Python that invokes the Arbiter API
when provided with a VD template on a target binary both
of which can be specified via command-line arguments. The
artifact requires machines that contain 1 logical core and at
least 4 GB of RAM. A containerized copy of the artifact is
available and can be used on any systems that support docker.
The software requirements for installing are Python (version
at least 3.8) and angr. The artifact has been tested on a ma-
chine running Ubuntu 18.04. The artifact also contains the
list of packages that were used for evaluation, a JSON file
containing the MD5 hashes of each of the binaries as well as
the actual binaries from the Juliet data set that were evaluated.

Our paper describes ARBITER as a combination of static
analysis and dynamic symbolic execution that can be used
to detect classes of vulnerabilities in binary programs with
high scalability and low false positive rate. The large scale
evaluation on 76,516 x86-64 binaries in Ubuntu repositories
as well as the evaluation on Juliet Test Suite (v1.3) highlight
these properties of ARBITER .

In order to validate the experiments, one can repeat them
using the provided templates and compare the results with
those presented in the paper. Since the underlying techniques
used by ARBITER contain a degree of non-determinism, the
results may vary slightly when evaluating on larger binaries.
However, the overall results will be comparable to those pre-
sented in the paper.

A.2 Artifact check-list (meta-information)
• Binary: Binary executables from the Juliet Test Suite (v1.3)

that were used during the evaluation are included in the artifact.

• Data set: The artifact contains a list of packages from the
Ubuntu repository and a JSON file that contains the MD5 sums
of each binary used for the evaluation.

• Run-time environment: The artifact was verified to work on
Ubuntu 18.04 and requires Python (version at least 3.8) and
angr binary analysis framework.

• Hardware: Our experiments were performed on a kubernetes
cluster where each pod was provided 1 logical core and 4 GB
of RAM. However, each pod could request up to 8 GB of RAM.

• Execution: The artifact contains a helper script that can be
executed using the Python interpreter. The arguments to this
script include the VD template to use as well as the target
binary to analyze.

• Metrics: The metric used in the experiment is the false posi-
tive rate of the bugs reported.

• Output: Each template outputs the bugs that it detects in the
target binary. The results are also stored into log files and json
files that are saved on the disk.

• Experiments: To prepare and run the experiments, steps re-
quired are as follows.

1. Download the relevant binary if required.
2. Clone the artifact repository from

https://github.com/jkrshnmenon/arbiter and install it or
pull the docker image 4rbit3r/arbiter:latest.

3. Execute the helper script named run_arbiter.py provided
in vuln_templates/ with a VD template and a path to the
target binary as arguments.

• How much disk space required (approximately)?: The to-
tal disk space used, including downloaded binaries and gen-
erated output files, for our experiment is approximately 350
GB.

• How much time is needed to prepare workflow (approxi-
mately)?: Installing the framework or using the docker con-
tainer should take nearly 5 minutes. However, downloading
the binaries could take up to 1 minute per package. Even if this
process is performed in parallel, it could take up to 1 hour to
download all the packages depending upon the network speed.

• How much time is needed to complete experiments (ap-
proximately)?: Our evaluation was performed on a kuber-
netes cluster that allowed running 800 tasks at a time. With
that constraint, our evaluation of 76,516 binaries took nearly 2
days to complete per template.

• Publicly available (explicitly provide evolving
version reference)?: The artifact is available at
https://github.com/jkrshnmenon/arbiter/releases/tag/v1.1 and
as a docker image 4rbit3r/arbiter:latest

• Workflow frameworks used?: We used kubernetes in our
experiments that allowed us to run 800 tasks at a time with
each task being allotted 1 logical core and 4 GB of RAM.

A.3 Description
A.3.1 How to access

The artifact is publicly available at
https://github.com/jkrshnmenon/arbiter/releases/tag/v1.1 and
as a docker image 4rbit3r/arbiter:latest.

A.3.2 Hardware dependencies

The artifact requires 1 logical core and at least 4 GB of RAM.

A.3.3 Software dependencies

The artifact has been verified to work on Ubuntu 18.04 and requires
Python (at least version 3.8) and the angr python package.

A.3.4 Data sets

A list of the packages used and JSON file containing the binaries
and their MD5 sums are provided. The corresponding binaries can
be downloaded from the Ubuntu repositories. The binaries from the
Juliet Test Suite (v1.3) are provided with the artifact.

https://github.com/jkrshnmenon/arbiter
https://hub.docker.com/repository/docker/4rbit3r/arbiter
https://github.com/jkrshnmenon/arbiter/releases/tag/v1.1
https://hub.docker.com/repository/docker/4rbit3r/arbiter
https://github.com/jkrshnmenon/arbiter/releases/tag/v1.1
https://hub.docker.com/repository/docker/4rbit3r/arbiter


A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
The artifact contains a setup script that can be executed to install
the framework. After the repository has been cloned, the following
command can be used to install the framework : python setup.py
install.

A.5 Experiment workflow
The experiment was performed on a kubernetes cluster. In order to
deploy tasks on the cluster, a docker image has to be specified. We
create docker images for each CWE type that would execute the
corresponding template script against a specified target binary and
wrote the results to disk. This process was repeated for each CWE
type using the corresponding template script.

Since the Juliet data-set only provides documentation about the
locations of vulnerabilities in terms of source code files and line
numbers, a mapping between this location and the address of corre-
sponding function in the compiled binary is required.

ARBITER provides the function address where the vulnerability
has been detected. This information, combined with the ground-truth
from the Juliet data-set can be used to evaluate the false-positive rate
of ARBITER .

A.6 Evaluation and expected results
The paper highlights the high scalability and low false positive rates
of ARBITER . The key results that highlight these properties are :

• The large scale evaluation on 76,516 x86-64 binaries on 4
different CWE types.

• The resulting reports that were manually evaluated and the
false positive rate was determined to be nearly 40%.

• The evaluation on the Juliet Test Suite (v1.3) where the false
positive rate was found to be nearly 23%.

In order to reproduce these results, the templates can be evaluated
against the target binaries and the results generated can be manually
verified. The expected false positive rate across all the 4 CWE types
on the entire data set of 76,516 x86-64 binaries in the Ubuntu repos-
itories is nearly 40% while the expected false positive rate for the
binaries from the Juliet Test Suite is nearly 25%.

A.7 Experiment customization
The existing templates can be evaluated on any x86-64 user-space
binary. The easiest way to evaluate the existing templates on a new
binary is to use the run_arbiter.py helper script and specifying the
VD template to use as well as a path to the new binary as argument.

The process of implementing a new VD template for a different
CWE type has been described in the paper and demonstrated in
the comments inside the examples directory. This process can be
followed in order to evaluate ARBITER using a new template.

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


