B Artifact Appendix
B.1 Abstract

Our artifact contains source files of the Orca blocklisting pro-
tocol as a library in Rust. The cryptographic protocol is built
on top of the open-source arkworks library for pairing-based
cryptography. The implementation consists of three major
parts: (1) an implementation of the Chase et al. algebraic
MAC protocol, (2) an implementation of the Orca group sig-
nature, and (3) an implementation of the Orca one-time-use
token protocol. The artifact also includes two benchmarks
for reproducing the performance numbers reported on. These
benchmarks can be easily run on any machine that can com-
pile Rust from source, though we report performance numbers
from running on high-memory AWS machines (for the server)
and mobile devices (for the client). The artifact does not in-
clude source files for the griefing attack and battery-drain
experiments against Signal, as they are potentially harmful
and are not core to our work’s claimed contribution.

B.2 Artifact check-list (meta-information)

» Algorithm: The Orca blocklisting protocol including group
signature and one-time-use tokens.

* Compilation: Benchmarks are built from source using the
Rust compiler.

* Run-time environment: Our artifact was run on a
c5.12xlarge AWS EC2 virtual machine with 24 cores and 96
GB of memory running Ubuntu Server 20.04 LTS, as well as
on a mobile device running Android 9.

* Hardware: The mobile microbenchmarks were run on a
Google Pixel 2 device. The server throughput benchmark re-
quires at least 64 GB, though comparable results can be repro-
duced with less memory.

» Execution: The microbenchmarks run in less than 5 minutes.
The server throughput benchmark runs in under 2 hours on our
test AWS machine.

Security, privacy, and ethical concerns: We do not provide
the source files for the griefing attack and battery-draining
experiments.

e Output: The benchmarks produce summarized performance
outputs printed to the terminal.

¢ Experiments: There are two benchmarks: (1) microbench-
marks for measuring the performance of the cryptographic
primitives used in Orca, and (2) macrobenchmark for measur-
ing server throughput of requests.

* How much time is needed to prepare workflow (approx-
imately)?: The benchmark binaries are built from source in
under 5 minutes. Setting up the AWS machine and/or the mo-
bile device may take additional time.

* Publicly available?: The latest version of the library is
available at https://github.com/nirvantyagi/orca. The
version that underwent artifact review is marked with tag
usenix-sec22-ae.

ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

susenix yusenix susenix
ASSOCIATION @ HssociATion @ Hssociation

REPRODUCED

AVAILABLE

B.3 Description
B.3.1 How To Access

The latest version of the library is available at https://
github.com/nirvantyagi/orca. The version that under-
went artifact review is marked with tag usenix-sec22-ae.

B.3.2 Hardware Dependencies

Our artifact was run on a c5.12xlarge AWS EC2 virtual
machine with 24 cores and 96 GB of memory running Ubuntu
Server 20.04 LTS. The server throughput benchmark requires
at least 64 GB, though comparable results can be reproduced
with less memory. The mobile microbenchmarks were run on
a Google Pixel 2 device running Android 9.

B.3.3 Software Dependencies

Full instructions for building from source are provided on
the project README. All dependencies are readily available
through the Rust package manager and binaries can be built
from source in under 5 minutes.

B.3.4 Security, Privacy, and Ethical Concerns

We do not provide the source files for the griefing attack and
battery-draining experiments.

B.4 Installation

The setup consists of installing Rust and compiling the bench-
mark binaries from source. Compiling and running the mi-
crobenchmarks on a mobile device requires additional in-
stallation of the Android Native Development Kit (NDK)
and related Rust toolchains. The macrobenchmark for server
throughput additionally requires installing and running a
Redis server locally. Detailed installation instructions are
given on the README available at https://github.com/
nirvantyagi/orca.

B.5 Evaluation and Expected Results

There are two benchmark binaries that we report results on.
The first is the microbenchmarks binary that is used to popu-
late Figure 5. The platform and desktop client user columns
are given from running the microbenchmark binary on a sin-
gle core of the specified AWS machine. The mobile client
user column is given from running the microbenchmark on
the specified mobile device.

The second benchmark binary measures server throughput
and is used to populate Figure 6. The reported numbers are
based on experiments setting benchmark parameters of 200
requests for a blocklist size of 100, a strikelist size of 1400,
and one million users, while varying the number of cores.
This setup requires 64 GB of memory, however, the number
of users can be reduced (e.g., to 200) to reproduce similar
results without large memory requirements.



Detailed evaluation instructions are given on the README
available at https://github.com/nirvantyagi/orca.

B.6 Experiment Customization

The benchmark source code is available and can be cus-
tomized beyond the exisiting parameterization.

B.7 Notes

The cryptographic code has not been reviewed; it serves as a
research prototype and is not suitable for deployment. If any
bugs are discovered, please raise an issue on Github or send
an email to the authors.



