
A Artifact Appendix

A.1 Abstract
This artifact contains the source code of RapidPatch and the
stuff for running it. Since RapidPatch is designed for hotpatch-
ing embedded devices, to evaluate the basic functions, you
need to have a Cortex-M3/M4 based arm development board.
If you do not have these devices, we also provide a simple
version that can run on qemu, and can demonstrate the func-
tionable of RapidPatch by running the hotpatching process
using fixed patch points (only one of the three hotpatching
strategies supported by our tool). To fully evaluate and re-
produce the results, you need to have at least one of these
STM32F407/STM32L475/STM32F429/NRF52840 develop-
ing boards. Note that you can use any of the MacOS/Win-
dows/Linux Platform to develop or evaluate it, we provide
Docker and PlatformIO-based VSCode cross-platform build-
ing environments.

A.2 Artifact check-list (meta-information)
• Binary: Pre-build RapidPatch firmware for different de-

vices (you can also build from scratch).

• Hardware: Qemu and real devices, such as,
STM32F429/NRF52840/STM32L475 and ESP32 de-
veloping boards.

• How much time is needed to prepare workflow (approxi-
mately)?: 3h

• Publicly available?: Yes

• Code licenses (if publicly available)?: GPL v3.0

• Archived (provide DOI or stable reference)?: Yes

A.3 Description
A.3.1 How to access

All the documents and source code are available on github.
https://github.com/IoTAccessControl/
RapidPatch/tree/ae-v1.0.
(Commit: 591f82e5cf4f91cfa440bb376cb4975ce78ce871)

A.3.2 Hardware dependencies

RapidPatch relies on the Debug Monitor Handler of Cortex-M3+
MCU to dynamically trigger patches without modifying the Flash
ROM. The recommended devices are NRF52840, STM32F429, or
STM32L475. You can also port RapidPatch to other devices with
Cortex-M3/M4 MCUs via PlatformIO.
Note that for devices other than Cortex-M3+, you can only use
compiling time patch points placement.

A.3.3 Software dependencies

To compile the source code from scratch, you need to install the
following software.

• Docker (manually)

• gcc-arm-none-eabi (installed by Docker)

• qemu-system-arm (installed by Docker)

• VSCode and the PlatformIO plugin (manually)

• Keil (optional)

If you do not have any required hardware and just want to quickly
try it, we provide Docker scripts with a push-button to run the core
functionalities of RapidPatch on any platform that supports Docker.
In this case, you do not need to install any aforementioned software.

A.4 Installation
To run on Docker, you can use our docker images or build from the
Dockerfile. The detail steps is shown in docker-qemu.md document.

To try RapidPatch on real devices, you can build and flash these
projects with the Keil project or Platform-IO projects or just use the
pre-build firmware.

A.5 Experiment workflow
You can follow the HOWTO.md document to test the functions of
RapidPatch. There detailed steps of deploying a patch is as follows.

1. Integrate the RapidPatch Runtime to the firmware of your
devices.

2. Write a patch based on the origin C source code patch.
3. Generate the eBPF bytecode via the RapidPatch Toolchain’s

patch generator.

python3 main . py gen t e s t _ c v e 1 . c \
t e s t _ c v e 1 . b i n

4. Verify the eBPF bytecode via the RapidPatch Toolchain’s patch
verifier. Note that, for the filter patch, the verifier can automatically
insert the SFI instructions for loops.

python3 main . py v e r i f y t e s t _ c v e 1 . b i n

5. Deploy the patch to real devices with our Usart tool or directly
paste the patches’ bytecode to your firmware code.

python3 main . py m o n i t o r COM15
> i n s t a l l t e s t _ c v e 1 . j s o n

6. Test the patch functions with the Usart commend line interface.

A.6 Evaluation and expected results
After setting up the firmware, you can use a serial port tool (e.g.,
CoolTerm) to connect to the devices and trigger commends to con-
duct the evaluation. To preform the micro-evaluation, you need to
use the Usart shell commend (e.g., run exp_idx) to execute the corre-
sponding experiments.

The results of micro-benchmark is output to the Usart shell mes-
sage and contains the execution time and CPU cycles.

Event 0 −> c y c l e : 38 t ime (us) : 0 .475000

To evaluate the macro-benchmark, you can use the the pre-built
Zephyr Apps and the test tools to measure the performances. The
results are written to local files.

https://github.com/IoTAccessControl/RapidPatch/tree/591f82e5cf4f91cfa440bb376cb4975ce78ce871
https://github.com/IoTAccessControl/RapidPatch/tree/ae-v1.0
https://github.com/IoTAccessControl/RapidPatch/tree/ae-v1.0
https://github.com/IoTAccessControl/RapidPatch/tree/591f82e5cf4f91cfa440bb376cb4975ce78ce871
https://github.com/IoTAccessControl/RapidPatch/blob/591f82e5cf4f91cfa440bb376cb4975ce78ce871/Docker/docker-qemu.md
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/tree/b7b0a78eba7b04df16e13d3b9b643d30890ceabc/Keil-Baremetal-Projs
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/tree/b7b0a78eba7b04df16e13d3b9b643d30890ceabc/PlatformIO
https://github.com/IoTAccessControl/RapidPatch/blob/591f82e5cf4f91cfa440bb376cb4975ce78ce871/HOWTO.md
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/blob/master/PlatformIO/stm32f4xx/lib/hotpatch/src/dynamic_patch_load.c#L141
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/tree/b7b0a78eba7b04df16e13d3b9b643d30890ceabc/RTOS-Projs
https://github.com/IoTAccessControl/RapidPatch/tree/ArtifactEvaluation/board-prebuilts/NRF52840/Zephyr-CoAP-CVE-2020-10063/evaluation
https://github.com/IoTAccessControl/RapidPatch-VulDevices-AE/tree/b7b0a78eba7b04df16e13d3b9b643d30890ceabc/evaluation/data

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results

