
A Artifact Appendix

A.1 Abstract

The public repository1 contains all the code necessary to
reproduce the data for all performance graphs/tables in the pa-
per, as well as PoCs to demonstrate that the mitigation works.
This includes patches and build instructions for LLVM11, the
Intel SGX SDK and PSW, as well as the benchmarks. The
artifact requires SGX to evaluate, and is easiest to run on
Ubuntu 18.04 or 20.04.

A.2 Artifact check-list (meta-information)
• Program: Adapted versions of nbench and sgxbench are

downloaded & installed via included scripts.

• Compilation: Requires a modified Clang 11, install & down-
load script is included.

• Transformations: A tool to fix up relocations is included
(relocator).

• Run-time environment: Needs a native Linux installation
that supports SGX, Ubuntu 18.04 or 20.04 are strongly recom-
mended. Build scripts need internet access at several points.
Requires root for installation and evaluation. PoCs require the
PTEditor kernel module.

• Hardware: Intel CPU with SGX support, needs to be vulner-
able to LVI-Null for PoC tests (affected CPUs).
The PoCs need a kernel module, which means either self-
signing or disabling secure boot. This may require physical
access to the machine.

• Run-time state: As this artifact includes performance bench-
marks, a stable CPU frequency and isolated cores are recom-
mended.

• Execution: For ideal testing, the system should have isolated
cores, fixed frequency, and not much other activity.

• Metrics: Benchmarks report cycle count or iterations/s, PoCs
report leakage percentage.

• Output: Benchmark outputs are .csv tables with performance,
an included spreadsheet can convert to a graph similar to the
paper.

• Experiments: Installation scripts are included and described
here and in READMEs.

• How much disk space required (approximately)?: 4-5GB

• How much time is needed to prepare workflow (approxi-
mately)?: 2-3h

• How much time is needed to complete experiments (ap-
proximately)?: 3-6h, depends on hardware

• Publicly available?: https://github.com/IAIK/LVI-
NULLify

• Code licenses (if publicly available)?: zlib

1https://github.com/IAIK/LVI-NULLify

A.3 Description
A.3.1 How to access

Clone https://github.com/IAIK/LVI-NULLify/tree/ae_
final and follow the README.md from there.

A.3.2 Hardware dependencies

As this is a mitigation for Intel SGX, SGX support is a hard
requirement. To fully evaluate the PoCs, and not just mitigation
performance, the CPU also needs to be vulnerable to LVI. You
can check if your CPU is vulnerable here: https://software.
intel.com/content/www/us/en/develop/topics/software-
security-guidance/processors-affected-consolidated-
product-cpu-model.html

A.3.3 Software dependencies

We strongly recommend Ubuntu 18.04 or 20.04 as these are officialy
supported by Intel, and all our tools were tested on them.

Beyond standard compilation tools (ninja, cmake etc) our PoCs
require the PTEditor kernel module 2. Other requirements are listed
in the README files at the appropriate points.

A.4 Installation
Follow the detailed README in the top-level directory to set up our
modified clang compiler and relocator and install the SGX driver as
well as our modified SGX SDK and PSW.

Once that is done, you can already test your installation with the
PoCs by following the README file in the POC directory.

With a working PSW and driver, you can follow the README in
the benchmarks directory to download and build the benchmarks.

A.5 Experiment workflow
After building the benchmarks, follow along in the README to start
all or a subset of them. An important aspect to keeping benchmarks
comparable is to fix the CPU’s frequency to a sustainable level, and
idealy run them on an isolated core.

PoCs can be run according to the README in the POC folder.

A.6 Evaluation and expected results
The main results in our paper are contained in Figure 4/Table 3.
These are the performance overheads of our LVI-NUll mitigation
compared to other, similar mitigations. The second, more implicit
result is the efficacy of LVI-NULLify.

For the benchmarks, the absolute performance overheads vary
significantly between different machines and architectures (compare
Figure 4 and Figure 5), but the relative differences should be roughly
similar. That is: LVI-Nullify should be the fastest mitigation, or at
least very close to Intel CFI, typically followed, with some distance,
by Intel’s optimized-cut mitigation.

For the PoCs, starting once without and once with mitigation
should produce qualitatively similar results to the examples shown
in the README. That means, for the 3 PoCs where LVI-Nullify is

2https://github.com/misc0110/PTEditor/

https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://github.com/IAIK/LVI-NULLify
https://github.com/IAIK/LVI-NULLify
https://github.com/IAIK/LVI-NULLify
https://github.com/IAIK/LVI-NULLify/tree/ae_final
https://github.com/IAIK/LVI-NULLify/tree/ae_final
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://github.com/misc0110/PTEditor/


effective, leakage rate should drop to zero, or a level that is compa-
rable to the noise-catching output "other". While absolute leakage 
rates before applying the mitigation may differ significantly from 
system to system, they should be clearly differentiable from "other".

The respective READMEs for benchmarks and PoCs detail how 
to reproduce these results.

A.7 Experiment customization
Attack PoCs need a cache miss threshold, which is automatically 
determined. If this doesn’t work, it can be set manually in the corre-
sponding App.cpp file. All PoCs include a conf.h file, in which the 
character that should be leaked can be changed if desired.

Both benchmark run-scripts contain a variable called "iso-
lated_core" that sets the core on which they should be run on. Set 
this to an isolated core, if available.

sgx-nbench contains a parameter to change the number of itera-
tions in the file, see the benchmarking README.

https://www.acm.org/publications/policies/artifact-review-badging

