
A Artifact Appendix

A.1 Abstract
Our artifacts provide a program to identify files of differ-
ent formats and pair them together if these formats makes it
possible, as polyglot or optionally as near polyglots. Other
programs we provide can then turn these files into ambiguous
ciphertexts, and then decrypt these ciphertexts to verify the
validity of the payloads.

Many examples of input files and ambiguous ciphertexts
are also provided.

A.2 Artifact check-list (meta-information)
• Program: Mitra, Key Commitment

• Compilation: Python 3 (Mitra), SageMath (Key Commit-
ment)

• Output: [near] polyglots and ambiguous ciphertexts

• How much disk space required (approximately)?: 6 Mb

• How much time is needed to prepare workflow (approxi-
mately)?: 5 min

• How much time is needed to complete experiments (ap-
proximately)?: 5 mins

• Publicly available?: Y

• Code licenses (if publicly available)?: MIT

A.3 Description
A.3.1 How to access

Complete source and examples are available at :

• the Mitra repository (https://github.com/corkami/
mitra/ at tag Usenix22) – for file manipulation and
ciphertext generation with GCM.

• the Key Commitment repository (https://github.
com/kste/keycommitment/ at tag Usenix22) – for ci-
phertext generation with GCM, GCM-SIV and OCB3.

A.3.2 Software dependencies

Python 3 and SageMath with the Cryptography, Py-
Cryptodome, PyMuPDF and BitVector packages.

A.4 Installation
Clone or download the repositories and install the extra pack-
ages if needed. Note that, depending on your SageMath in-
stallation, you might have to install the Python packages
within SageMath, e.g.: sage -python3 -m pip install
pycryptodome.

A.5 Evaluation and expected results

A.5.1 Ambiguous PDF/PE file

The PDF/PE combination was used because it can be included
in the release of the IACR archive (https://ia.cr/2020/
1456) – the article file itself is a proof of concept.

1. Generate a near polyglot

From any PDF file, in mitra/utils/extra run
pdfpe.py <file.pdf> SumatraPDF18fixed.exe (it
works with other Windows executables – this one is pro-
vided as an example).

You get a near polyglot file named like
Z(2-33-211420).exe.pdf.

Keep the file name intact, as it uses a special syntax to
store extra information: in this case 2, 33 and 221420
are the offsets where the polyglot content switches to the
other file type.

2. Generate an ambiguous ciphertext

From the Key Commitments repository, run the follow-
ing command :

sage mitra_gcm.sage
-k 4e6f773f000000000000000000000000

4c347433722121210000000000000000
-n 00000000000000000000e7c6
-a 4d79566f69636549734d795061737321
"Z(2-33-211420).exe.pdf" -p > poly.gcm

3. Decrypt and validate the different payloads from the
ambiguous ciphertext

From the directory mitra/utils/gcm, run the
decrypt.py poly.gcm command line.

You obtain from the same ciphertext the original PDF
document and a windows executable – that is a PDF
viewer in this case.

The files have changed of course, but they behave like
the original input files.

A.5.2 Ambiguous HTML file

The HTML/HTML combination was used because it’s tiny
and demonstrates the vulnerability which can occur in a ser-
vice like Subscribe with Google if an AEAD without key-
commitment is used.

1. Use the following example files

• normal.htm :
<html>Hello World!</html>

https://github.com/corkami/mitra/
https://github.com/corkami/mitra/
https://github.com/kste/keycommitment/
https://github.com/kste/keycommitment/
https://ia.cr/2020/1456
https://ia.cr/2020/1456

• evil.htm :
<html>Click
here!</html>

2. Generate an ambiguous HTML file

From mitra/utils/extra, run htmhtm.py
normal.htm evil.htm, and you’ll get a file called
(4-26)7.d3f286cd.htm.htm.

3. Generate an ambiguous ciphertext

in mitra/utils/gcm, run the following command:

meringue.py
-i 7 "(4-26)7.d3f286cd.htm.htm"
attack.gcm

4. Validate the ambiguous ciphertext by extracting the dif-
ferent plaintexts

From the mitra/utils/gcm directory, run decrypt.py
attack.gcm.

A.5.3 Ambiguous JPEG/? file

This combination is mentioned because the brute-forcing was
reduced to 4 bytes (as opposed to 6 bytes in prior works) and
requires a special workflow with post-processing of the near
polyglot.

1. Generate a (non-working) near polyglot

Use with any file that is supported with JPEG near poly-
glots, for example ICC files.

mitra.py <file.jpg> <file2.bin> --verbose
--overlap

If ran on a JPEG, it will output the following warning :

> Jpeg overlap file: reducing two bytes
> (don’t forget to post-process

after bruteforcing)

and generate a near polyglot file.

2. Find a valid nonce for the near polyglot

From mitra/utils/gcm/, run the command nonce.py
<near_polyglot>.

This bruteforcing operation will use the 2-bytes shortcut
but requires extra post-processing. This script will output
a nonce value.

3. Post-process the near polyglot

Run jpg4fix.py <near_polyglot> <nonce>. It will
generate a fixed near polyglot starting with 4-.

4. Generate the ambiguous ciphertext

Run the following command:

meringue.py
-k 01010101010101010101010101010101

02020202020202020202020202020202
-i <index_offset>
-n <nonce>
<fixed_near_poly>
ambiguous.gcm

This execution will generate an ambiguous ciphertext.

The index argument is the block index of the file where
the TAG will be written. The indexed block should be
blank : if the near polyglot file doesn’t have such a block,
you might want to add appended data to the polyglot
itself or to the parasite inside.

5. Generate and validate the different payloads

In the mitra/utils/gcm/ folder, run the following
decrypt.py ambiguous.gcm command.

Once again, you’ll get different files that just work like
the input files.

A.6 Experiment customization
These file operations will work with different cryptographic
parameters (keys, nonces, index), and other block ciphers with
reasonable code modifications.

Many other file formats are supported by Mitra and can be
combined as polyglots or near polyglots. Make sure you use
standard input files: weird files created by Mitra might not
be supported by Mitra itself as they may not have a standard
structure anymore – you may want to use the input/* files
provided in Mitra as a start.

Use the --verbose flag to get more feedback (e.g. why
a polyglot was not generated). Use the --reverse flag if
you’re not sure which files should come first and last in the
command line.

Other block cipher modes such as OCB and GCM-SIV
are supported and included in the Key Commitment reposi-
tory.

Use the mitra_ocb.sage or mitra_siv.sage scripts to
generate ambiguous ciphertexts, and the decrypt_ocb.sage
or decrypt_siv.sage scripts accordingly to decrypt pay-
loads.

Unlike other modes that have byte granularity, GCM-SIV
and OCB3 require block alignment. You may want to add
two blocks of pre-padding and post-padding to the parasite
when generating the [near] polyglot files.

For GCM-SIV, the complexity of generating an ambiguous
ciphertext requires solving a system of linear equations of size
relative to the files size, while it’s constant for the other modes.
The other expensive operation is bruteforcing the nonce of
ambiguous ciphertext from near polyglots, which depends on
the size of the overlap.

