A Artifact Appendix
A.1 Abstract

The artifact is an open-source Python library that implements
a novel framework to evaluate the privacy-utility trade-off
of synthetic data publishing and to compare it to that of tra-
ditional sanitisation techniques. The library provides imple-
mentations of two privacy attacks to evaluate privacy gain
with respect to the risk of linkability and inference. It further
includes implementations of five example generative models,
three standard models and two models trained under formal
privacy guarantees.

The artifact contains experiment scripts and configuration
files to reproduce some of the results presented in the paper.
In particular, the example runs described in the README
allow the user to partially reproduce the graphs of Section 6
that compares the privacy-utility trade-off of (differentially
private) synthetic data to traditional anonymisation.

A.2 Artifact checklist

e Algorithm: The privacy (and utility) games introduced in the
paper are implemented in the corresponding command line
interface (cli files.)

e Data set: The repository contains a copy of the cleaned-up
and pre-processed dataset used for the main set of experiments.
The dataset and the required metadata can be found in the data
folder under texas.csv and texas. json, respectively.

e Run-time environment: Synthetic Data is also distributed as
aready-to-use Docker image containing Python 3.9 and CUDA
11.4.2, along with all dependencies required by Synthetic Data.

e Hardware: When running evaluations for either the PATE-GAN
or CTGAN model it is useful to have a GPU at hand. This signif-
icantly speeds up the execution. However, they are not needed
for running the example experiments.

o Execution: The README includes instructions about how
to run three example experiments. The evaluation under the
linkage risk model is the most compute- and memory-intensive.
On a machine with an Intel(R) Core(TM) i7-7600U CPU @
2.80GHz with 2 cores (with hyperthreading) this should take
around 1h15m.

e Qutput: The example experiments produce output files in a
json format and can be parsed with the functions provided
in utils/analyse_rersults. We include a simple jupyter
notebook that allows to visualise and analyse the results.

e Experiments: The repository includes experiment configu-
ration for three key experiments. See further below of the
README of the repository.

¢ How much disk space required (approximately)?: If using
the dockerised deployment, its image requires 14GB of disk
space. The experiment outputs need

¢ How much time is needed to prepare workflow (approxi-
mately)?: <l1h (but strongly depends on the bandwidth of the
connection used to pull the Docker image).

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
é;usenlx é;usenlx susenix

ASSOCIATION @ #ssocion @ #ssociTion

AVAILABLE REPRODUCED

e How much time is needed to complete experiments (ap-
proximately)?: This depends on the compute power available.
On a machine with an Intel(R) Core(TM) i7-7600U CPU @
2.80GHz with 2 cores (with hyperthreading) it should take 3h
to run all example experiments.

e Publicly available?: The code is publicly available
at https://github.com/spring-epfl/synthetic_data_
release/tree/vl.1

e Code licenses (if publicly available)?: The code is dis-
tributed under a BSD-3-Clause License.

e Data licenses (if publicly available)?: See https://www.
dshs.texas.gov/THCIC/Hospitals/Download.shtm

A.3 Description

The library has two main classes: GenerativeModels and
PrivacyAttacks. For both classes we define a parent class that
determines the core functionality that objects of the class need to
implement.

GenerativeModel provides two main functions. GM.fit(R) is
called with a raw dataset R as input and implements the model’s
training procedure. GM.sample(m) generates a synthetic dataset S of
size m. The library enables easy integration of existing model training
procedures. GM.fit simply wraps any existing training algorithm
and exposes the appropriate API endpoints.

PrivacyAttack objects have two functions: PA.train and
PA.attack. PA.train trains the adversary’s guess function and
needs to be run before calling PA.attack. PA.attack(S), takes a
dataset S and outputs a guess about a secret value. In our implemen-
tation, we instantiate PrivacyAttack with two attacks, a linkage
adversary and an attribute inference attack.

The library also includes procedures to estimate the privacy gain
of synthetic and sanitised data publishing. These procedures can be
found in the corresponding cli files.

A.3.1 How to access

The code, some example data and experiment configuration files
are publicly available at https://github.com/spring-epfl/
synthetic_data_release/tree/vl.1.

A.3.2 Dependencies

For your convenience, Synthetic Data is also distributed as a ready-
to-use Docker image containing Python 3.9 and CUDA 11.4.2, along
with all dependencies required by Synthetic Data.

Note: This distribution includes CUDA binaries, before down-
loading the image, ensure to read its EULA and to agree to its terms.

A.3.3 Data sets

The repository contains a copy of the cleaned-up and pre-processed
dataset used for the main set of experiments, the Texas hospital
dataset. The dataset and the required metadata can be found in the
data folder under texas.csv and texas. json, respectively.

The Texas Hospital Discharge dataset is a large public use data
file provided by the Texas Department of State Health Services. The
dataset we include here for the experiments consists of 100,000


https://github.com/spring-epfl/synthetic_data_release/tree/v1.1
https://github.com/spring-epfl/synthetic_data_release/tree/v1.1
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://github.com/spring-epfl/synthetic_data_release/tree/v1.1
https://github.com/spring-epfl/synthetic_data_release/tree/v1.1

records uniformly sampled from a pre-processed data file that con-
tains patient records from the year 2013 and 2014. We retain 18 data
attributes of which 11 are categorical and 7 continuous.

A.4 Installation

Synthetic Data can either be installed from scratch or run in a dock-
erised environment. If you want to use the ready-to-use docker
container, pull the image and run a container (and bind a volume
where you want to save the data):
docker pull springepfl/synthetic-data:latest
docker run -it -rm -v "$(pwd) /output:/output"
springepfl/synthetic-data

The Synthetic Data directory is placed at the root directory of the
container.
cd /synthetic_data_release
You should now be able to run the examples without encountering
any problems.

A.5 Experiment workflow

We provide three example experiments and their configurations to
reproduce some of the key claims presented in Section 6 of the paper.

Privacy gain with respect to linkability. First, to run a privacy
evaluation with respect to the privacy concern of linkability you can
run
python3 linkage_cli.py -D data/texas -RC
tests/linkage/runconfig.json -0 tests/linkage

The results file produced after successfully running the
script will be written to tests/linkage and can be parsed
with the function load_results_linkage provided in
utils/analyse_results.py. A jupyter notebook to visu-
alise and analyse the results is included at notebooks/Analyse
Results.ipynb.

Privacy gain with respect to inference. To run a privacy evaluation
with respect to the privacy concern of inference you can run
python3 inference_cli.py -D data/texas -RC
tests/inference/runconfig. json -0 tests/inference

The results file produced after successfully running the script
can be parsed with the function load_results_inference pro-
vided in utils/analyse_results.py. A jupyter notebook to vi-
sualise and analyse the results is included at notebooks/Analyse
Results.ipynb.

Average machine learning utility. To run a utility evaluation with
respect to a simple classification task as utility function run
python3 utility_cli.py -D data/texas -RC
tests/utility/runconfig.json -0 tests/utility

The results file produced after successfully running the script can
be parsed with the function load_results_utility provided in
utils/analyse_results.py. The jupyter notebook contains code
for visualising the results.

A.6 Evaluation and expected results

Privacy gain with respect to linkability. This experiment allows
you to compare the privacy gain for five outlier records from the
Texas dataset with respect to the risk of linkability for three different
privacy mechanisms: traditional sanitisation (SanitiserNHSk10),

synthetic data produced by a standard Bayesian Network (BayNet)
and a differentially private version of this model (PrivBay). The
differentially private model is trained with a privacy parameter of
€ = 1.0. All other model hyperparameters match the ones used in
the paper.

After loading the results into the notebook named Analyse
Results.ipynb, you can inspect the per-target privacy gain for five
outlier records from the Texas dataset under a linkage attack with
varying feature sets. You should observe that, as described in the pa-
per, the privacy gain of most targets is larger under the BayesianNet
model compared to traditional sanitisation and further increases if
the synthetic data is sampled from the differentially private model
(compare with Fig.4 in Section 6.1 in the final version of the paper).
You can choose under which attack feature set you want to compare
the targets’ privacy gain.

Note: Due to the sampling uncertainty and randomness of the
attack and generative model training process, you should expect
slight variations between the observed privacy gain and the exact
values reported in the final publication. Furthermore, the observed
variance of the per-record privacy gain is likely larger than the one
reported in the final publication. This is because the privacy game
is run for a smaller number of iterations to reduce the computa-
tion time of the experiments. To reduce the reported standard varia-
tion, you can modify the parameter nIter in the configuration file
tests/linkage/runconfig. json.

Privacy gain with respect to inference. Similarly, the privacy gain
of the same target records under the same models with respect to
the risk of inference can be evaluated with the results file written to
tests/inference/. The results should be comparable to the data
presented in Fig. 6 of Section 6.2.

Utility loss under a classification task. This experiment allows you
to compare the utility loss of sanitised and synthetic data publishing
under a simple classification task as utility function. The details of
this experiment are described in Section 6.3.1. Here, we want to
compare the accuracy of a machine learning classifier trained on a
sanitised or synthetic dataset to that of a classifier trained on the raw
data. You should observe how training on data with a higher privacy
gain, i.e., (differentially private) synthetic data, leads to a decline in
the model’s accuracy compare to the raw data.

A.7 Experiment customization

To change the evaluation parameters, you can modify the
runconfig. json files in the corresponding experiment folders. For
instance, to change the size of the raw and synthetic datasets, respec-
tively, you can modify the parameters sizeRawT and sizeSynT for
each experiment file.

To evaluate the privacy gain of synthetic data publishing under
a different generative model, a new GenerativeModel class has
to be integrated. See A.3 for more details on the implementation
of this class. If you want to run the evaluation on an entirely new
dataset, a metadata file in . json format is necessary. You can use
the texas. json metadata file as a template.



