A Artifact Appendix
A.1 Abstract

The artifact is an implementation and empirical evaluation of
Aardvark, an authenticated dictionary.

The artifact contains two sets of benchmarks for evaluation
in the paper. First, it contains microbenchmarks of vector
commitment operations which compare those used in the
paper with those in EDRAX (a related system), and with a
basic Merkle Tree. Second, it contains a benchmark of the
dictionary operations themselves from the perspective of both
a validator and an archive, with the dictionary integrated into
the backend of the Algorand cryptocurrency. The objective
of these benchmarks is to substantiate the paper’s claims
of computational efficiency, which is difficult to analytically
evaluate. In particular, these benchmarks measure the latency
of key vector commitment and dictionary operations.

The artifact may be validated by downloading it from the
public GitHub repository URL provided and running the eval-
uation scripts, which are part of the repository. The expected
result of artifact evaluation is that the latency measurements
match those in the paper.

A.2 Artifact check-list (meta-information)

» Algorithm: Authenticated dictionary
¢ Program: Custom benchmarks, included

e Compilation: g++ 9.3.0, rustc 1.54.0-nightly (126561cb3
2021-05-24), go 1.16.4

e Metrics: Latency

* Output: File, measured characteristics, expected result in-
cluded

» Experiments: OS Scripts
* How much disk space required (approximately)?: 1GB

* How much time is needed to prepare workflow (approxi-
mately)?: 6hrs

¢ How much time is needed to complete experiments (approx-
imately)?: 13hrs

* Publicly available?: Yes

¢ Code licenses (if publicly available)?: MIT, GPLv3

¢ Archived (provide DOI)?: Yes,
https://github.com/derbear/aardvark-
prototype/tree/dd8f6aaf5t76173118f3f3decbe099bda5972ce2

A.3 Description
A.3.1 How to access

Clone the repository and its submodules from
GitHub at the following URL: https://
github.com/derbear/aardvark-prototype/tree/
dd8f6aaf5£76173118£3f3decbe099bdas5972ce2. For instance,
run

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
susenix susenix é;usenlx

ASSOCIATION ASSOCIATION ASSOCIATION

AVAILABLE REPRODUCED

git clone --recurse-submodules \
https://github.com/derbear/aardvark-prototype.git
git checkout dd8f6aaf5£76173118f3f3decbe099bda5972ce?2

EDRAX and its dependencies are under the edrax subdirectory,
the implementations of vector commitments and Merkle trees
are under the veccom-rust subdirectory (which depends on the
pairing-fork subdirectory), and the Algorand implementation re-
sides in the go-algorand subdirectory with the Aardvark imple-
mentation in go-algorand/ledger.

The --recurse-submodules option initializes the reposito-
ries to their correct versions. The commits corresponding to
this document’s version of the artifact for the top-level repos-
itory, veccom-rust, and edrax are all additionally labelled
usenix22-artifact through git tag. To confirm that the ver-
sions of all submodules are correct, run git submodule status
—-recursive from aardvark-prototype, which should produce
the following hashes.

1f1a3748d1530dale75fadbce987eebebfaldfdld edrax
530223d7502e95f6141bel9%addfle24d27a14d50
edrax/ate-pairing
a34850b2df66a186c8d947b4d72acc839926321f edrax/xbyak
cff079d3£78daa48d25183292960c21da%cdf152 pairing-fork
d72ed3c8b0e4624053360591fcc8d03ce720ae90 veccom-rust

If you did not supply the --recurse-submodules option above,
you can alternatively initialize these submodules by running the
following command from aardvark-prototype.

git submodule update --init --recursive

A.3.2 Hardware dependencies

To reproduce results regarding the authenticated dictionary’s scala-
bility, 32 cores are required. The provided benchmarking script in
the repository assumes the presence of at least 64 cores.

Around 110MB of disk space is required to clone the entire git
repository. Around 1GB of disk space is required to run the experi-
ments.

A.3.3 Software dependencies

Building the software depends on the compilers g++ 9.3.0, rustc
nightly-2021-05-25, and go 1.16.4; on the 1ibgmp3 library;
and on the build tools cmake, make, autoconf, automake, and
libtool. Running benchmarks depends on numact1.

A.3.4 Data sets
N/A

A.3.5 Models
N/A

A.3.6 Security, Privacy, and Ethical Concerns
N/A

https://github.com/derbear/aardvark-prototype/tree/dd8f6aaf5f76173118f3f3decbe099bda5972ce2
https://github.com/derbear/aardvark-prototype/tree/dd8f6aaf5f76173118f3f3decbe099bda5972ce2
https://github.com/derbear/aardvark-prototype/tree/dd8f6aaf5f76173118f3f3decbe099bda5972ce2

A.4 Installation

The following instructions assume that your working directory is
$TOP and that you are running Ubuntu 18.04 or 20.04. (Older ver-
sions of Ubuntu may require modifying these steps.)

A.4.1 Obtaining the source code

git clone --recurse-submodules \
https://github.com/derbear/aardvark-prototype.git

git checkout dd8f6aaf5£76173118f3f3decbe099bda5972ce2
git submodule update --init --recursive

A.4.2 Installing dependencies for EDRAX

sudo apt update
sudo apt install cmake g++ libgmp3-dev

ignore errors while building dependencies here
cd $TOP/aardvark-prototype/edrax/ate-pairing ; make
cd $TOP/aardvark-prototype/edrax/xbyak ; make

cd $TOP/aardvark-prototype/edrax ; cmake . && make

A.4.3 Installing dependencies for vector commitments

install rustup

curl --proto ’'=https’ --tlsvl.2 \
-sSf https://sh.rustup.rs | sh

input 1 for standard installation

add to shell profile for this to be persistent
source S$HOME/.cargo/env

rustup install nightly-2021-05-25
rustup default \
nightly-2021-05-25-x%86_64-unknown-linux-gnu

cd $TOP/aardvark-prototype/veccom-rust ;
cargo build --release

A.4.4 Installing dependencies for Aardvark, integrated
into Algorand

sudo apt update
sudo apt install autoconf automake libtool numactl

wget https://golang.org/dl/gol.16.4.linux-amd64.tar.gz
tar -C STOP -xzf gol.l6.4.linux-amd64.tar.gz

add to shell profile for this to be persistent
export PATH=$PATH:$TOP/go/bin
export GOPATH=$TOP/go

cd $TOP/aardvark-prototype/veccom-rust ;

cargo build --release

cd $TOP/aardvark-prototype/go-algorand ; make

input N when prompted, and ignore Makefile error

A.5 Experiment workflow

The following instructions assume that your working directory is
$TOP.

A.5.1 EDRAX microbenchmark

The EDRAX binary resulting from compiling calls into the EDRAX
implementation. It executes 100 iterations to warm up the ma-
chine state and then performs 1000 measurements of the imple-
mented Verify, CommitUpdate, and ProofUpdate operations. The
script edrax/bench. sh invokes the binary with the argument 10,
which corresponds to vectors with size 1024, and writes the results
as a CSV file to the file bench. csv to the current directory.

A.5.2 Aardvark vector commitment microbenchmark

The binary resulting from compiling
veccom-rust/src/bin/run_aardvark_bench.rs calls into
the implementation of vector commitments for Aardvark, as
well as an implementation of a Merkle Tree. It executes 100
iterations to warm up the machine state and then performs the
passed-in number of measurements of the operations described in
§4.1. The script veccom-rust /bench. sh invokes the binary with
the argument corresponding to vectors with size 1024 and with
1000 iterations, and it writes the results as a CSV file to the file
bench-results.txt to the current directory.

A.5.3 Aardvark dictionary benchmark

Aardvark is implemented as a modification of the database of the
Algorand cryptocurrency and is contained inside the repository
under the subdirectory go-algorand/ledger. The benchmark it-
self is written as a Go test within the file perf_test.go, and it
consists of a workload generation program (written as a Go test
TestWorkloadGen for convenience), as well as timed benchmarks
(written as a Go test Test TimeWorkload).

To generate the workload (which takes roughly 5 hours on the
paper hardware), run the following:

cd $TOP/aardvark-prototype/go-algorand/ledger ;
./bench.sh

This will create in the ledger subdirectory the files
workload-{init-}{c,d,m}, which correspond to the ini-
tialization data and sample load transactions for creation, deletion,
and modification benchmarks, respectively. Once the workloads are
created, the benchmarks may be run against them.

Note that if you are executing these commands over an SSH con-
nection, a dropped connection will terminate the generation process,
and you will need to reissue the command from the beginning. We
suggest using commands such as nohup, screen, or tmux to prevent
a dropped connection from interrupting the command

A.6 Evaluation and expected results

The paper claims that Aardvark is a secure authenticated dictionary
with substantial storage savings and short proofs, and it can process
more than a thousand operations per second.

The security of Aardvark is justified through a paper proof. The
evaluation contains an analysis of the storage savings and proof sizes,

which are straightforward to compute. The rest of the evaluation per-
forms an empirical analysis to obtain the throughput of a prototype
implementation of Aardvark, which is shown in the artifact.

The paper obtains the following empirical results in the evalua-
tion.

1. While Aardvark’s vector commitments are more computation-
ally intensive than Merkle trees, their costs are similar to those
in EDRAX without use of a SNARK.

2. A 32-core Aardvark validator can process 1-3 thousand opera-
tions per second. Validator costs benefit from parallelization.

3. Costs for archives are reasonable: each core can process about
10 deletion operations per second or 20 modification/insertion
operations per second.

The concrete numerical results are displayed on Tables 1
and 4 as well as Figures 3 and 4 in §8. Raw expected
results for vector commitment microbenchmarks are in
edrax/results and veccom-rust/bench-results, while
raw expected results for validator and archive opera-
tions are in go-algorand/ledger/validators.csv and
go-algorand/ledger/archives.csv respectively.

The following instructions assume that your working directory is
$TOP.

A.6.1 Microbenchmarks

The paper claims in §8.1, Table 1 concrete latency numbers for key
vector commitment operations for EDRAX, our implementation of
Aardvark, and our implementation of a basic Merkle Tree. Reproduce
them as follows.

benchmark EDRAX latency
cd $TOP/aardvark-prototype/edrax ; ./bench.sh
time ./bench.sh takes <lmin on paper’s hardware

benchmark vector commitments latency
cd $TOP/aardvark-prototype/veccom-rust ; ./bench.sh
time ./bench.sh takes <3mins on paper’s hardware

The output results for EDRAX are in edrax/bench.csv, while
the expected raw results in the paper are in edrax/results.
The output results for the vector commitments are in
veccom-rust/bench-results.txt, while the expected raw
results in the paper are in veccom-rust /bench-results.

A.6.2 Validator and Archive throughput

The paper claims in concrete latency measurements for insertion,
modification, and deletion operations for our implementation of
Aardvark for validators (§8.3, Table 4 and Figure 3) and for archives
(§8.4, Figure 4). Reproduce them as follows.

first, generate the workload as described in the
previous section

runs 3 scaling tests on validators

cd $TOP/aardvark-prototype/go-algorand/ledger ;
./cores.sh

time ./cores.sh takes <4hrs on paper’s hardware

runs 3 tests on archives

cd $TOP/aardvark-prototype/go-algorand/ledger ;
./acores.sh

time ./acores.sh takes <4hrs on paper’s hardware

The results for validators are in files n amed outN.txt, where
N is the number of cores and is either 1, 2, 4, 8, 16, or 32,
while the results for archives are in a file named aoutl.txt.
By default, both of these tests run 3 trials each. Expected
raw values for these results for 10 total trials each, manu-
ally merged, are in go-algorand/ledger/validators.csv and
go-algorand/ledger/archives.csv respectively.

Note that if you are executing these commands over an SSH con-
nection, a dropped connection will terminate the experiment process,
and you will need to reissue the command from the beginning. We
suggest using commands such as nohup, screen, or tmux to prevent
a dropped connection from interrupting the command.

A.7 Experiment customization

Different vector sizes may be passed to the vector commitments
libraries by modifying the command-line arguments which the
bench. sh files pass to the binaries.

Moditying go-algorand/ledger/perf_test.go will allow
modifying the number of initial accounts, the number of load transac-
tions, the number of blocks, and other parameters input to Aardvark.
(Modifying any variables here will require regeneration of the work-
load.)

https://www.acm.org/publications/policies/artifact-review-badging

