
A Artifact Appendix

A.1 Abstract

The artifact discovers the vulnerability gap between manual
models and automl models against various kinds of attacks
(adversarial, poison, backdoor, extraction and membership)
in image classification domain. It implements all datasets,
models, and attacks used in our paper.

We expect the artifact could support the paper’s claim
that automl models are more vulnerable than manual models
against various kinds of attacks, which could be explained by
their small gradient variance.

A.2 Artifact check-list (meta-information)
• Binary: on pypi with any platform.

• Model: Our pretrained models are available
on Zenodo (link). Follow the model path style
{model_dir}/image/{dataset}/{model}.pth to place

them in correct location.

• Data set: CIFAR10, CIFAR100 and ImageNet32. Use
--download flag to download them automatically at first run-

ning. ImageNet32 requires manual set-up at their website due
to legality.

• Run-time environment:
At any platform (Windows and Ubuntu tested).

‘Pytorch’ and ‘torchvision’ required. (CUDA 11.3 recom-
mended)

‘adversarial-robustness-toolbox’ required for extraction attack
and membership attack.

• Hardware: GPU with CUDA support is recommended.

• Execution: Model training and backdoor attack would be time-
consuming. It would cost more than half day on a Nvidia
Quodro RTX6000.

• Metrics: Model accuracy, attack success rate, clean accuracy
drop and cross entropy.

• Output: console output and saved model files (.pth).

• Experiments: OS scripts. Recommend to run scripts 3-5 times
to reduce the randomness of experiments.

• How much disk space required (approximately)?: less than
5GB.

• How much time is needed to prepare workflow (approxi-
mately)?: within 1 hour.

• How much time is needed to complete experiments (approx-
imately)?: 3-4 days.

• Publicly available?: on GitHub.

• Code licenses (if publicly available)?: GPL-3.

• Archived (provide DOI)?: GitHub commit
ade119d3c9aa1e851eba7db35f2de3c99eb0bf33.

A.3 Description
A.3.1 How to access

• GitHub: pip install -e .
• PYPI: pip install autovul
• Docker Hub: docker pull local0state/autovul
• GitHub Packages: docker pull ghcr.io/ain-soph/autovul

A.3.2 Hardware dependencies

Recommend to use GPU with CUDA 11.3 and CUDNN 8.0. Less
than 5GB disk space is needed.

A.3.3 Software dependencies

You need to install python==3.9, pytorch==1.10.x, torchvision==0.11.x
manually.

ART (IBM) is required for extraction attack and membership
attack. pip install adversarial-robustness-toolbox

A.3.4 Data sets

We use CIFAR10, CIFAR100 and ImageNet32 datasets. Use
--download flag to download them automatically at first running.

ImageNet32 requires manual set-up at their website due to legality.

A.3.5 Models

Our pretrained models are available on Zenodo (link). Follow
the model path style {model_dir}/image/{dataset}/{model}.pth to
place them in correct location.

A.4 Installation
• GitHub: pip install -e .
• PYPI: pip install autovul
• Docker Hub: docker pull local0state/autovul
• GitHub Packages: docker pull ghcr.io/ain-soph/autovul

(optional) Config Path

You can set the config files to customize data storage location and
many other default settings. View /configs_example as an example
config setting.

We support 3 configs (priority ascend):

• package (DO NOT MODIFY)

– autovul/base/configs/*.yml

– autovul/vision/configs/*.yml

• user

– ∼/.autovul/configs/base/*.yml

– ∼/.autovul/configs/vision/*.yml

• workspace

– ./configs/base/*.yml

– ./configs/vision/*.yml

https://pypi.org/project/autovul/
https://zenodo.org/record/5762440
https://image-net.org/download-images.php
https://github.com/ain-soph/autovul/tree/ade119d3c9aa1e851eba7db35f2de3c99eb0bf33
https://github.com/ain-soph/autovul
https://pypi.org/project/autovul/
https://hub.docker.com/r/local0state/autovul
https://github.com/ain-soph/autovul/pkgs/container/autovul
https://image-net.org/download-images.php
https://zenodo.org/record/5762440
https://github.com/ain-soph/autovul
https://pypi.org/project/autovul/
https://hub.docker.com/r/local0state/autovul
https://github.com/ain-soph/autovul/pkgs/container/autovul

A.5 Experiment workflow
Bash Files

Check the bash files under /bash to reproduce our paper results.

Train Models

You need to first run /bash/train.sh to get pretrained models.
If you run it for the first time, please run with --download flag

to download the dataset:
bash ./bash/train.sh "--download"

It takes a relatively long time to train all models, here we provide
our pretrained models on Zenodo (link). Follow the model path
style {model_dir}/image/{dataset}/{model}.pth to place them in
correct location. Note that it includes the pretrained models for
mitigation architectures as well.

Run Attacks

/bash/adv_attack.sh

/bash/poison.sh

/bash/backdoor.sh
/bash/extraction.sh
/bash/membership.sh

Run Other Exps

Gradient Variance
/bash/grad_var.sh

Mitigation Architecture
/bash/mitigation_train.sh (optional)

/bash/mitigation_backdoor.sh

/bash/mitigation_extraction.sh
Optionally, You can generate these architectures based on

DARTS_V2 using python ./projects/generate_mitigation.py .
We have already put the generated archs in
autovul.vision.utils.model_archs.darts.genotypes . Note that

we have provided the pretrained models for mitigation architectures
on Google Drive as well.

For mitigation experiments, the architecture names in our paper
map to:

• darts-i: diy_deep

• darts-ii: diy_noskip

• darts-iii: diy_deep_noskip

These are the 3 options for --model_arch {arch} (with

--model darts)
To increase cell depth, we may re-wire existing models generated

by NAS or modify the performance measure of candidate models.
For the former case, we have provided the script to rewire a given
model (link). Note that it is necessary to ensure the re-wiring doesn’t
cause a significant performance drop. For the latter case, we may
increase the number of training steps in the single-step gradient
descent used in DARTS.

To suppress skip connects, we replace the skip connects in a
given model with other operations (e.g., convolution) or modify the
likelihood of them being selected in the search process. Fro the
former case, we have provided the script to substitute skip connects
with convolution operations (link). Note that it is necessary to ensure
the substitution doesn’t cause a significant performance drop. For
the latter case, we may multiply the weight of skip connect αskip by
a coefficient γ ∈ (0,1).
Loss Contours

Take the parameter-space contour as an example. We pick the
parameters of the first convolutional layer and randomly generate
two orthogonal directions d1 and d2 in the parameter space. For
simplicity, we set all each dimension of d1 and d2 to be either +1 or
−1 in a random order and ensure that their orthogonality as d1 ·d2 =
0. We then follow Equation (12) in the paper to explore the mesh
grid of [−0.5,0.5]× [−0.5,0.5] and plot the loss contour. A similar
procedure is applied to plot the loss contour in the input space, but
with the grid set as [−0.2,0.2]× [−0.2,0.2]

A.6 Evaluation and expected results
Our paper claims that automl models are more vulnerable than man-
ual models against various kinds of attacks, which could be explained
by low gradient variance.

Training

(Table 1) Most models around 96%-97% accuracy on CIFAR10.

Attack

For automl models on CIFAR10,

• adversarial: (Figure 2) higher success rate around 10%
(±4%).

• poison: (Figure 6) lower accuracy drop around 5% (±2%).

• backdoor: (Figure 7) higher success rate around 2% (±1%)
and lower accuracy drop around 1% (±1%).

• extraction: (Figure 9) lower inference cross entropy around
0.3 (±0.1).

• membership: (Figure 10) higher auc around 0.04 (±0.01).

Others

• gradient variance: (Figure 12) automl with lower gradient
variance around 2.2 (±0.5).

• mitigation architecture: (Table 4, Figure 16, 17) deep ar-
chitectures (darts-i, darts-iii) have larger cross entropy for
extraction attack around 0.5, and higher accuracy drop for poi-
soning attack around 7% (±3%) with setting of 40% poisoning
fraction.

A.7 Experiment customization
Use -h or --help flag for example python files to check available
arguments.

https://zenodo.org/record/5762440
https://github.com/ain-soph/autovul/blob/main/projects/generate_mitigation.py
https://github.com/ain-soph/autovul/blob/main/projects/generate_mitigation.py

