
A Artifact Appendix

A.1 Abstract
This artifact description contains information about a proto-
type implementation of PRIVANALYZER. The implementa-
tion is composed of (1) a policy parser; (2) a static analyzer;
and (3) a set of function summaries. Code for performance
evaluation on Parcel is not provided due to non-disclosure
concern.

A.2 Artifact check-list (meta-information)
• Algorithm: Parse policy strings in LEGALEASE to disjunc-

tive normal form.
• Program: LEGALEASE parser + PRIVANALYZER + a set of

function summaries.
• Run-time environment: Ubuntu 16.04 LTS.
• Execution: See below.
• Output: Residual policy.
• Experiments: See below.
• Publicly available?: Code and example test cases are pub-

licly available.
• Code licenses (if publicly available)?: MIT License.

A.3 Description
A.3.1 How to access

The codebase can be accessed from Github https://github.
com/sunblaze-ucb/privguard-artifact with commit hash
b1b5f3a16af6ab5f7cb0f0737aba27dd9d76c25b. We are still actively
updating the codebase. To access the newest version, please use
https://github.com/sunblaze-ucb/privguard-artifact.

A.3.2 Software dependencies

To run PRIVANALYZER, python3.6 and python3.6-venv are required.
Additional Python package dependencies are as follow.

• pypandoc==1.6.4
• pyparsing==3.0.0rc2
• numpy==1.19.5

A.4 Installation
The statis analyzer has been tested in Ubuntu 16.04 system. To run
the static analyzer, pleaes install python3.6 and python3.6-venv using
the following lines.

sudo apt install python3.6
sudo apt install python3.6-venv

To download our codebase, run

git clone https://github.com/sunblaze -ucb/
privguard -artifact.git

Then create and activate a python3.6 virtual environment, install
python packages, and set environment variables by running

chmod u+x path -to-repo/setup.sh
path -to-repo/setup.sh

A.5 Evaluation and expected results
In this codebase, we provide test scripts for the policy parser and the
static analyzer separately.

Policy Parser. To test the policy parser, run

python path -to-repo/src/parser/policy_parser
.py

and input a valid policy string (e.g. "ALLOW FILTER age >= 18
AND SCHEMA NotPHI, h2 AND FILTER gender == ’M’ ALLOW
(FILTER gender == ’M’ OR (FILTER gender == ’F’ AND SCHEMA
PHI))") in Legalease. The program will output the policy translated
to Python objects.

To test converting a policy into its DNF form, run

python path -to-repo/src/parser/policy_tree.
py

Static Analyzer. We provide 5 example programs to test the
static analyzer. To run these examples, use the following script with
correct flag values. Please make sure your environment variable is
correctly set before testing the below functionality (see setup.sh for
more information).

python path -to-repo/src/analyze.py --
example_id XX

We provide details about two examples below.

ELECTRICAL HEALTH RECORD (0): The first example loads two
data files: patients/data.csv and conditions/data.csv whose policies
are as below.

ConjunctClause(redact: NAME(None:None),
filter: AGE [e18, einf])

ConjunctClause(filter: CONSENT [eY, eY],
filter: DESCRIPTION [
eViralSinusitisDisorder ,
eViralSinusitisDisorder], privacy:
Aggregation)

The residual policy is

ConjunctClause(UNSAT)

which means the policy is unsatisfiable. The reason is that in the last
line of the program, the DataFrame calls its groupby method which
prevents any further operation to satisfy the PRIVACY Aggregation
attribute.

TRANSACTION PREDICTION (6): The second example loads one
data file: train/data.csv whose policy is as below.

ConjunctClause(privacy: Aggregation , redact:
ID(None:None))

The program drops the ID column and trains a model on the data, so
the guard policy is fully satisfied and the residual policy is

ConjunctClause(SAT)

https://github.com/sunblaze-ucb/privguard-artifact
https://github.com/sunblaze-ucb/privguard-artifact
https://github.com/sunblaze-ucb/privguard-artifact

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Software dependencies

	Installation
	Evaluation and expected results


