
A Artifact Appendix

A.1 Abstract
All experiments were conducted in Ubuntu-18.04 with 1TB
memory and Intel(R) Xeon(R) Gold 6248 20 Core CPU @
2.50GHz * 2. But it’s ok if we don’t have that much computing
resource. The minimal configuration is at least 4 core CPU,
8G memory and at least 200G disk space. It’s recommend
to enable more CPU cores, they will speedup the compiling,
fuzzing and symbolic execution significantly.

In our paper, we test more than 1000 bugs and each of them
require 3 hours kernel fuzzing, 1 hour static analysis and 4
hours symbolic execution. If we plan to accomplish all 1000
cases, it costs more than two weeks, therefore we only choose
a subset of them for Artifact Functional.

A.2 Artifact check-list (meta-information)
• Program: SyzScope now open source at
https://github.com/seclab-ucr/SyzScope/tree/
b1a6e20783ba8c92dd33d508e469bc24eaacaab6. This
version is the one we conduct the experiment. It’s recommend
to download the docker container we provided. The details
shows in the github README. If you have a fast internet
speed, you may want to pull the ready2go docker image,
otherwise mini docker image requires extra compliation.

• Compilation: If you pull the mini docker image or run SyzS-
cope in your custom system, you have to compile the essential
tools. Using command python3 syzscope –install-requirements.
The detailed instructions can be found at our github page
https://github.com/seclab-ucr/SyzScope/

• Data set: Since running all cases takes more than two weeks,
we only prepare a subset of them for the artifact functional
badge. The dateset we provide is the ones we got CVEs
from: https://sites.google.com/view/syzscope/home. We made
a google sheet of this dataset at https://docs.google.
com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_
Zjdddta9nIy-poEuq66E/edit?usp=sharing

• Run-time environment: SyzScope is designed on Ubuntu
18.04, written by python3, C++, golang, and bash script. Every
other Linux system should support SyzScope just fine. But we
still recommend to use our docker image in case any environ-
ment differences.

• Output: We wrote detailed tutorial for how to read output
from fuzzing, static analysis and symbolic execution. You can
access them on
https://github.com/seclab-ucr/SyzScope/blob/
master/tutorial/fuzzing.md

https://github.com/seclab-ucr/SyzScope/blob/
master/tutorial/static_taint_analysis.md

https://github.com/seclab-ucr/SyzScope/blob/
master/tutorial/sym_exec.md

• Experiments: To run the experiment, you first need to prepare
the case hash for SyzScope. Since we already give the dataset,
you just need to simply copy and paste the case hash into a file

(one hash per line), let’s say the name of that file is dataset,
and run SyzScope with nohup python3 syzscope -i
dataset -RP -KF -SA -SE -timeout-kernel-fuzzing
3 -timeout-static-analysis 3600
-timeout-symbolic-execution 14400 -guided
-be-bully &, If you have enough CPU cores, you can
even try run multiple cases at the same time by specify -pm,
for example -pm 8 means run 8 cases at the same time. The
log output will be written into nohup.out since we use nohup
to make the process running in background.

• How much disk space required (approximately)?: SyzS-
cope requires 24GB for essential packages and tools. Besides
them, SyzScope may require 2GB for each case. Consider-
ing 8 cases in our dataset, it’s better to have 20GB remaining.
Therefore in total we suggest having 50GB reamining on your
disk.

• How much time is needed to complete experiments (ap-
proximately)?: At maximum each case takes 3 hours kernel
fuzzing, 1 hours static analysis and 4 hours symbolic execution
(8 hours in total), but some cases may terminate early. If we
run these 8 cases together -pm 8, we should finish all of them
in 8 hours, if we run them one by one, it probably takes more
than 3 days (64 hours).

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT License

• Data licenses (if publicly available)?: MIT License

• Archived (provide DOI)?: https://
github.com/seclab-ucr/SyzScope/tree/
b1a6e20783ba8c92dd33d508e469bc24eaacaab6 is
the stable version that conduct all experiments.

A.3 Description

A.3.1 How to access

Access the github repo at https://
github.com/seclab-ucr/SyzScope/tree/
b1a6e20783ba8c92dd33d508e469bc24eaacaab6. The
current version is the one conduct all experiment. Another
option is to download the docker image, you can find the
instructions on github repo.

A.3.2 Hardware dependencies

The minimal configuration is at least 4 core CPU, 8G memory
and at least 200G disk space. It’s recommend to have more
CPU cores, they will speedup the compiling, fuzzing and
symbolic execution significantly. To run multiple cases at
the same time, use -pm argument. We recommend you run n
cases at the same time which n equals to the number of cores
divide 4 (e.g, if you have 16 cores, we recommend you use
-pm 4 to run 4 cases that the same time)

https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/fuzzing.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/fuzzing.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/static_taint_analysis.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/static_taint_analysis.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/sym_exec.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/sym_exec.md
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6
https://github.com/seclab-ucr/SyzScope/tree/b1a6e20783ba8c92dd33d508e469bc24eaacaab6


A.3.3 Software dependencies

Software dependencies will be installed by running python3
syzscope -install-requirements. Or you can use the
ready2go docker image within all dependencies installed

A.3.4 Data sets

https://docs.google.com/spreadsheets/d/
16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/
edit?usp=sharing

A.4 Installation
The detailed installation instructions are presented in
the github repo https://github.com/seclab-ucr/
SyzScope.

A.5 Experiment workflow
First, gather all cases we want SyzScope to run, copy
the hash value from dataset page we provided, and
paste them into a file, one hash per line. Second,
run SyzScope with nohup python3 syzscope -i
dataset -RP -KF -SA -SE -timeout-kernel-fuzzing
3 -timeout-static-analysis 3600
-timeout-symbolic-execution 14400 -guided
-be-bully &, this process may take a long time.
If you have more than 4 cores, you can run mul-
tiple cases at the same time by provide -pm argu-
ments. For example, nohup python3 syzscope -i
dataset -RP -KF -SA -SE -timeout-kernel-fuzzing
3 -timeout-static-analysis 3600
-timeout-symbolic-execution 14400 -guided
-be-bully -pm 6 & runs 6 cases at the same time,
but it requires at least 4*6 cores on your machines.

Third, cases that found high-risk impacts will be moved to
succeed folder, cases that failed to find high-risk impacts
will be moved to completed folders. Rerun those failed
cases by using -force. For example, python3 syzscope
-i f99edaeec58ad40380ed5813d89e205861be2896
-RP -KF -SA -SE -timeout-kernel-fuzzing
3 -timeout-static-analysis 3600
-timeout-symbolic-execution 14400 -guided
-be-bully -force. If any error occurs, check out
the common issues on our github page https:
//github.com/seclab-ucr/SyzScope/blob/master/
tutorial/common_issues.md.

Final, check out the results from symbolic ex-
ecution and compare it with the ones shown on
our webpage https://sites.google.com/view/
syzscope/home. The results of symbolic execution is in
work/succeed/xxx/sym-xxx/symbolic_execution.log.
The high-risk impacts stores under
work/succeed/xxx/sym-xxx/primitives.

For example, to verify case
ce5f07d6ec3b5050b8f0728a3b389aa510f2591b, you
will find a function pointer dereference impact at work/su
cceed/ce5f07d/sym-ori/primitives/FPD-try_to_wa
ke_up-0xffffffff8137be7d-17 which related to the one
we present on our webpage https://sites.google.com/
view/syzscope/kasan-use-after-free-read-in-io_
async_task_func.

A.6 Evaluation and expected results
Due to race condition, some bugs may be hard to trigger or
trigger different contexts. We just need to run multiple times
to increase the possibility of bug reproducing.

The final component is symbolic execution. To verify
the final results from symbolic execution, check out the
file "symbolic_execution.log". (Read more details at
https://github.com/seclab-ucr/SyzScope/blob/
master/tutorial/sym_exec.md) The number of new
impacts shown at the end of the file.

In terms of the results, you may have slightly different
output due to different configuration of experiment machine.
We ran all experiments on Ubuntu-18.04 with 1TB memory
and Intel(R) Xeon(R) Gold 6248 20 Core CPU @2.50GHz *
2. If you use machine that less powerful than ours, you might
have less high-risk impacts comparing to our results. One
approach to verify our results is through the CVE we obtained.
We create a page to document the detailed analysis about the
cases that received CVE, and each of them has at least one
high-risk impact. These high-risk impacts are the reasons for
CVE obtainment, so if you can verify those high-risk impacts
on your end, it means the results are reproduceable.

See the link to each detailed analysis on our dataset page.

A.7 Notes
457491c4672d7b52c1007db213d93e47c711fae6 has mul-
tiple UAF contexts due to race condition. Our web page
shows only one of them(ucma_close), but another UAF con-
text(ucma_destroy_id) may also lead to control flow hijack-
ing.
f99edaeec58ad40380ed5813d89e205861be2896

may be hard to trigger. If it failed to run
symbolic execution, try python3 syzscope -i
f99edaeec58ad40380ed5813d89e205861be2896 -RP
-SE -timeout-symbolic-execution 14400 -guided
-force.

4bf11aa05c4ca51ce0df86e500fce486552dc8d2
has an arbitrary value write on a local variable in
hci_extended_inquiry_result_evt shown on our
webpage. However we abandoned any local variable write
due to short life span of local variable and they are merely
exploitable. So Running SyzScope on this case now will no
longer find any high-risk impact.

https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16tt4Mo40iyWeuxOXBpRtmV_Zjdddta9nIy-poEuq66E/edit?usp=sharing
https://github.com/seclab-ucr/SyzScope
https://github.com/seclab-ucr/SyzScope
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/common_issues.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/common_issues.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/common_issues.md
https://sites.google.com/view/syzscope/home
https://sites.google.com/view/syzscope/home
https://sites.google.com/view/syzscope/kasan-use-after-free-read-in-io_async_task_func
https://sites.google.com/view/syzscope/kasan-use-after-free-read-in-io_async_task_func
https://sites.google.com/view/syzscope/kasan-use-after-free-read-in-io_async_task_func
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/sym_exec.md
https://github.com/seclab-ucr/SyzScope/blob/master/tutorial/sym_exec.md

