A Artifact Appendix
A.1 Abstract

Our artifacts facilitate building and running Morphuzz for the
QEMU and Bhyve hypervisors. These are the two implemen-
tations of Morphuzz described in our paper. We packaged the
fuzzers in two VMs (one for fuzzing each hypervisor). Use
an Intel/AMD x86-64 Linux machine to run these VMs.

A.2 Artifact check-list (meta-information)

* Compilation: clang (included)

* Run-time environment: Linux

* Hardware: Intel/AMD x86-64 Machine

e Output: Crashes

* How much disk space required (approximately)?: 20 GB

* How much time is needed to prepare workflow (approxi-
mately)?: 1-2 Hours

¢ Publicly available?: Yes
* Code licenses (if publicly available)?: GPLv2
Archived?: https://zenodo.org/record/5655839

A.3 Description
A.3.1 How to access

Download the Artifacts (2 VM images) from: https://zenodo.
org/record/5655839

A.3.2 Hardware dependencies

Intel or AMD x86-64 Machine with Virtualization support

A.3.3 Software dependencies
Linux, KVM, and QEMU 3.1+

A4 QEMU Installation

Our instructions are based around VM images. The evaluation should
be possible on a single bare-metal x86 machine running linux.
Please install QEMU to run these VMs:

e Debian: apt install gemu-system-x86_64
e Ubuntu: apt install gemu-system-x86_64
e Fedora: yum install gemu-kvm

e Other: https://www.gemu.org/download/

Additionally, to ensure that the VM takes advantage of hardware-
acceleration

1. Check that you have virtualization extensions enabled in BIOS
(VT-x on Intel, AMD-V/SEV on AMD).

2. Check that your user has access to /dev/kvm. Usually, you can
add your user to the kvm group: sudo adduser $USER kvm.
(Otherwise you may need to run gemu as root/with sudo).

ARTIFACT ARTIFACT
EVALUATED EVALUATED
susenix yusenix

ASSOCIATION ASSOCIATION

AVAILABLE

3. To test out bhyve-fuzzing, you may need to enable support
for nested-virtualization. Unlike the QEMU-Fuzzer, the bhyve-
Fuzzer is not decoupled from the in-kernel CPU virtualization
component. Thus, even though our fuzzers do not run any vir-
tual CPU code, we will need to enable nested-virt to create the
VM. This amounts to loading the KVM kernel module with a
special flag. This page has instructions to do this for AMD and
Intel CPUs: https://docs.fedoraproject.org/en-US/
quick-docs/using-nested-virtualization-in-kvm/

Please open a terminal and "cd" into the folder containing the
gcow2 VM images you downloaded. We will be building the fuzzers
inside the VMs. Then, we will fuzz a virtual-device. We will observe
any crashes found by the fuzzer. Finally, we will generate coverage-
reports for the results.

In each VM, we provide annotated scripts that will build the fuzzer
and run it for some example virtual-device.

Boot the QEMU Fuzzing VM:

$ gemu-system-x86_64 -machine g35 \

—-accel kvm -cpu host -m 4G -smp 2 \

-hda ./morphuzz_gemu.qcow2 -vga virtio \
-device virtio-net,netdev=mynet0 \

-netdev \

user, id=mynet0, hostfwd=tcp:127.0.0.1:22222-:22

After a few seconds, you should be able to ssh into the VM from
another terminal on your machine:

$ ssh -p22222 paper@localhost
Credentials:

user: paper

pass: artifact_eval

Once you are SSHed, we can proceed with building and running
the fuzzer.

A.5 QEMU Evaluation

We provide annotated scripts for building, fuzzing, and providing
readable qtest-reproducers:

$ cat build.sh # Examine the build script...
$./build.sh # Build QEMU with Morphuzz

$ cat run_example.sh # Examine the example script
for running the fuzzer

$./run_example.sh # Fuzz a virtual device

ctrl-c to stop fuzzing

$ cat reproducer.sh # Examine the script
to build a QEMU reproducer

$./reproduce.sh # This will reproduce
a megaraid bug

$./build_gcov.sh # Build Morphuzz with
GCov Support

$./run_gcov.sh # Run the CORPUS collected by
run_example.sh and output a
coverage summary

https://zenodo.org/record/5655839
https://zenodo.org/record/5655839
https://www.qemu.org/download/
https://docs.fedoraproject.org/en-US/quick-docs/using-nested-virtualization-in-kvm/
https://docs.fedoraproject.org/en-US/quick-docs/using-nested-virtualization-in-kvm/

Once you are ready to switch to the bhyve VM: sudo shutdown

A.6 Dbhyve Installation

Boot the bhyve Fuzzing VM:

$ gemu-system-x86_64 -machine g35 \

-accel kvm -cpu host -m 4G -smp 2 \

-hda ./morphuzz_bhyve.qcow2 -vga virtio \
-device virtio-net,netdev=mynet0 \

-netdev \

user, id=mynet0, hostfwd=tcp:127.0.0.1:22223-:22

After a few seconds, you should be able to ssh into the VM from
another terminal on your machine:

$ ssh -p22223 paper@localhost
Credentials:

user: paper

pass: artifact_eval

A.7 bhyve Evaluation

$ cat build.sh # Examine the build script...
$ sudo ./build.sh # Build Bhyve with Morphuzz
$ cat run_example.sh # Examine the example run script

$ sudo ./run_example.sh # Fuzz Bhyve configured with
common virtual-devices
ctrl-c to stop fuzzing

$ sudo ./reproduce_crashes.sh # This will reproduce

the crashes discovered

by Morphuzz
$ sudo ./run_cov.sh # This will output a fuzzing
coverage report to /tmp/html

Use scp to copy the coverage report to the local
machine. View the report in a web browser.

Note that some of these commands require sudo. Once you are
done, sudo poweroff

A.8 Experiment customization

The QEMU/Bhyve configurations can be customized by chang-
ing the environment variables specified in the run_example.sh
script. These variables specify the virtual devices attached to
QEMU/Bhyve.

A.9 Notes

These steps are specific to the artifacts provided in the VMs. An
up-to-date version of QMorphuzz is maintained and documented at
https://gitlab.com/qemu-project/qemu/ !

Current upstream documentation for using QEMU’s fuzzing
infrastructure/QMorphuzz can be found at:
https://gitlab.com/gemu-project/qgemu/-/blob/
€39deb218178d1£fb814dd2138ceff4b541a03d85/docs/devel/
fuzzing.rst

The main differences between the upstream version of Morphuzz,
and the version described in this paper are:

¢ The upstream version of QMorphuzz performs PCI enumera-
tion, prior to fuzzing, to improve fuzzing efficiency.

* The upstream version contains some device-specific fuzzers
(independent of QMorphuzz), which serve mostly as examples
to go along with documentation. These are removed in the
artifact.

¢ The upstream version of QMorphuzz provides a sparse memory
device which improves the efficiency of the fuzzing process.

e The upstream version of QMorphuzz includes the configura-
tions used to fuzz QEMU on OSS-Fuzz.

¢ The version of QEMU in the artifacts is 5.0.0. At this time,
QEMU 6.2.0 has been released. Many of the bugs that can
be found by Morphuzz in the artifact VM have already been
patched.

¢ The upstream version comes with documentation for fuzzing
additional devices, and adding custom QEMU fuzzers.

I'Stable link to the version of QEMU at the time of this writing:
https://gitlab.com/gemu-project/gemu/~/tree/
c39deb218178d1£fb814dd2138ceff4b541a03d85

https://gitlab.com/qemu-project/qemu/
https://gitlab.com/qemu-project/qemu/-/blob/c39deb218178d1fb814dd2138ceff4b541a03d85/docs/devel/fuzzing.rst
https://gitlab.com/qemu-project/qemu/-/blob/c39deb218178d1fb814dd2138ceff4b541a03d85/docs/devel/fuzzing.rst
https://gitlab.com/qemu-project/qemu/-/blob/c39deb218178d1fb814dd2138ceff4b541a03d85/docs/devel/fuzzing.rst
https://gitlab.com/qemu-project/qemu/-/tree/c39deb218178d1fb814dd2138ceff4b541a03d85
https://gitlab.com/qemu-project/qemu/-/tree/c39deb218178d1fb814dd2138ceff4b541a03d85

