
A Artifact Appendix

A.1 Abstract
This artifact describes the frameworks used for our evalua-
tions. The artifact consists of two relatively separable com-
ponents: (1) a covert channel discovery framework that runs
directly on real hardware, and (2) a gem5 simulation infras-
tructure that evaluates our mitigation strategies. The covert
channel framework can be used to replicate the results pre-
sented in Section 4, and in particular, the results summarized
in Table 1. The gem5 infrastructure can be used to replicate
the performance and security results presented in Section 7.

A.2 Artifact check-list (meta-information)
• Programs: SPEC CPU2017, SunSpider JS Benchmarks, Wolf-

SSL RSA and AES benchmarks.

• Compilation: LLVM with -O3 for SPEC.

• Hardware: AMD Ryzen Threadripper 3960X and Intel Core
i7-6770HQ for Covert Channel Framework. The gem5 simula-
tor runs on any modern x86 hardware.

• Run-time Environment: The provided covert channel frame-
work and gem5 simulator are tested on Ubuntu 20.04. The
scripts for running SPEC benchmarks on gem5 assume an
available Slurm workload manager.

• Output: The covert channel framework outputs the covert
channels bandwidth and error rate. The gem5 simulator outputs
the execution time and performance in terms of Cycles Per
Instruction (CPI).

• Experiments: Scripts and instructions are provided in the arti-
fact README files.

• How much disk space required (approximately)?: About
250 GB of disk space is required for the SPEC 2017 simpoints,
and around 5 GB is needed for the gem5 code and binaries.
The covert channel framework requires less than 100 MB.

• How much time is needed to prepare workflow (approxi-
mately)?: About 30 minutes to download the frameworks and
install requirements, and around 30 minutes to compile gem5.

• How much time is needed to complete experiments (ap-
proximately)?: Assuming enough available parallelism, the
gem5 experiments need at least 3 hours. The covert channel
measurements require about 2 hours to complete.

• Publicly available?: Yes, the code is available on Github (see
Section A.3.1).

• Code licenses: GPL v3.

A.3 Description
A.3.1 How to access

The artifact is available on github at the following
URL: https://github.com/mktrm/SecSMT_Artifact/
tree/86286e06f6f1d8ce9583af950edacb87f14e39ba.

A.3.2 Hardware dependencies

A bare-metal machine is required to run the covert channel
measurements. The bandwidth of the covert channels are mea-
sured on two specific processors: Intel Core i7-6770HQ and
AMD Ryzen Threadripper 3960X. While the covert channel
framework can be adapted for other processors, it requires
extensive parameter fine-tuning to achieve the best channel.

A.3.3 Programs

We provide Simpoints created from SPEC 2017 benchmarks
for the artifact evaluators, but we cannot publish them as they
are under copyright. Other programs used for evaluations are
publicly available.

A.4 Installation
The artifact provides scripts to install requirements as well as
building the provided tools.

A.5 Experiment workflow
This section provides a high-level overview of the experimen-
tal workflow. Please follow the instructions in the README
for a detailed, step-by-step guide.

The covert channel framework needs to first install a ker-
nel module that facilitates reading values for performance
counters. Note that those performance counter values are only
used for debugging purposes and our covert channel com-
munication is entirely based on execution time (cycle time).
To make a fair comparison between the covert channels, we
make sure the processors are configured to be always on per-
formance mode (scripts are provided). Then, the provided
makefile detects the hardware (Intel or AMD) and compiles
the covert channel measurement codes for all the available
covert channels for that platform. It then runs multiple rounds
of the experiments for each channel and reports the average
bandwidth and error rate of all successful channels (if the
error rate is less than 10%).

For the evaluation of the mitigation strategies, we need
to first compile the gem5 code and prepare our benchmark
programs. Then, we run multiple gem5 simulations for each
pair of benchmark programs. Each experiment is configured
to represent one of the following multithreading approaches:
(1) a fully dynamically shared insecure baseline, (2) a fully
statically partitioned pipeline, (3) our Adaptive partitioning,
and (4) our Asymmetric SMT approach in which we apply
Asymmetric SMT on top of adaptive partitioning for some re-
sources. Finally, once the simulations are finished, we run the
provided scripts to extract the results from gem5 simulations
and draw the figures.

A.6 Evaluation and expected results
A successful run of the covert channel framework will result
in a set of bandwidth and error rate pairs. If the measurements

https://github.com/mktrm/SecSMT_Artifact/tree/86286e06f6f1d8ce9583af950edacb87f14e39ba
https://github.com/mktrm/SecSMT_Artifact/tree/86286e06f6f1d8ce9583af950edacb87f14e39ba


take place on the mentioned processors, the bandwidth num-
bers should be around the results reported in Table 1. Note that 
the fluctuation in bandwidth and error rate numbers can be 
caused by various sources of noise such as voltage/frequency 
scaling, OS scheduling, etc.

The gem5 simulation of the mitigation strategies should 
result in performance numbers that match those presented in 
the paper.

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

