
A Artifact Appendix

A.1 Abstract

Secure inference allows a model owner (or, the server)
and the input owner (or, the client) to perform in-
ference on machine learning model without revealing
their private information to each other. Recently,
Lehmkuhl et al. proposed a secure inference system,
Muse, in client malicious threat model. In our pa-
per titled “SIMC: ML Inference Secure Against Ma-
licious Clients at Semi-Honest Cost”, we design and
build Simc, a new cryptographic system for secure
inference in client malicious threat model.

In this artifact, we implement our proposed sys-
tem Simc. Using this implementation, we show that
Simc has 23−29× lesser communication and is up to
11.4× faster than Muse, for benchmarks considered
by Muse. Simc obtains these improvements using
a novel protocol for non-linear activation functions
(such as ReLU) that has > 28× lesser communica-
tion and is up to 43× more performant than Muse.

In this article, we summarize the system require-
ment, installation and building process, and finally,
the execution process in order to obtain the perfor-
mance numbers reported in our paper.

A.2 Artifact check-list (meta-
information)

• Algorithm: SIMC (Secure Inference Against Mali-
cious Client) protocol.

• Program: Implementation in C++
(https://aka.ms/simc).

• How much disk space required (approxi-
mately)?: 16GB.

• How much time is needed to prepare workflow
(approximately)?: 3 hours.

• How much time is needed to complete exper-
iments (approximately)?: 20 minutes

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT
License.

A.3 Description

A.3.1 How to access

Access the github repo using link:
https://aka.ms/simc (commit id:
2a5fd092b52427cc9cac55b36ec50ae43ecee6be).

A.3.2 Software dependencies

Install Eigen3, SEAL and emp-toolkit repositories. See
Installation steps for more details.

A.4 Installation and Compilation

1. Create parent directory msi-code

mkdir msi-code && cd msi-code

2. To install Eigen3 do

sudo apt-get update -y

sudo apt-get install -y libeigen3-dev

3. Follow the installation steps of [emp-toolkit/emp-
sh2pc].

4. Clone this repo in the parent directory msi-code.

5. Install SEAL 3.64

(a) Clone SEAL 3.6 repo in the parent directory
msi-code.

(b) Execute

cd SEAL

git checkout 3.6.4

mkdir build && cd build

cmake ..

make -j

sudo make install

6. In msi-code, go to emp-tool and do git checkout

df363bf30b56c48a12c352845efa3a4d8f75b388.

7. Next, go to emp-ot in
msi-code and do git checkout

3b21d6314cb1e7d8dbb9bb1f1ed80261738e4f4c.

8. For multi-threading support, go to emp-tool and run
the following

cmake . -DTHREADING=ON

make -j

sudo make install

9. Do the same for emp-ot repository.

10. Finally, do the same in our (simc) repository.

https://github.com/shahakash28/simc/tree/2a5fd092b52427cc9cac55b36ec50ae43ecee6be
https://github.com/emp-toolkit/emp-sh2pc
https://github.com/emp-toolkit/emp-sh2pc
https://github.com/microsoft/SEAL.git


A.5 Experiment workflow

The protocol is run between two parties. Open two ter-
minal windows and run the following test files from path
msi-code/simc:

A.5.1 Run Neuralnet Benchmarks

1. Fully-connected Layer: In one terminal
run bin/test msi linearlayer 1 0.0.0.0

<port no> 44 <neural network> and in
other terminal run bin/test msi linearlayer

2 <server ip address> <port no> 44

<neural network>.

2. Convolution Layer: In one terminal run
bin/test msi convlayer 1 0.0.0.0 <port no>
44 <neural network> and in other terminal run
bin/test msi convlayer 2 <server ip address>
<port no> 44 <neural network>.

3. Non-Linear Layer (ReLU): In one terminal run
bin/test msi relu final 1 0.0.0.0 <port no>
44 <neural network> 0 0 <num threads> and in
other terminal run bin/test msi relu final

2 <server ip address> <port no> 44

<neural network> 0 0 <num threads>.

4. Average Pool Layer: In one terminal run
bin/test msi average 1 0.0.0.0 <port no>
44 <neural network> and in other terminal run
bin/test msi average 2 <server ip address>
<port no> 44 <neural network>.

Here, the first parameters 1 and 2 denote the ID
of the participating party. <server ip address>
denotes the ip address of the server machine
and set <neural network>=1 for MNIST and
<neural network>=2 for CIFAR-10. See Figure 1
for examples.

A.5.2 Run Neuralnet Micro-benchmarks

See Figure 2 for instructions and examples to run
micro-benchmarks. Note that, for different system-
configuration, different number of threads may provide
best performance for given number of ReLUs.

A.6 Evaluation and expected results

To obtain performance numbers of our protocol that were
used to generate the plot of Figure 7 of our paper, follow
instructions in Section A.5.2.

Follow instructions in Section A.5.1, and then aggre-
gate the observed runtime and communication cost across
all the layers to obtain performance numbers of Tables 1,
2 and 3 of our paper. If the protocols are run in simi-
lar system setting as ours, the observed runtime will be
similar to what has been reported in paper.



Fully connected Layer:

Terminal 1: bin/test_msi_linearlayer 1 0.0.0.0 31000 44 1

Terminal 2: bin/test_msi_linearlayer 2 <server_ip_address> 31000 44 1

Convolution Layer:

Terminal 1: bin/test_msi_convlayer 1 0.0.0.0 31000 44 1

Terminal 2: bin/test_msi_convlayer 2 <server_ip_address> 31000 44 1

Non-Linear Layer (ReLU):

Terminal 1: bin/test_msi_relu_final 1 0.0.0.0 31000 44 1 0 0 8

Terminal 2: bin/test_msi_relu_final 2 <server_ip_address> 31000 44 1 0 0 8

Average Pool Layer:

Terminal 1: bin/test_msi_average 1 0.0.0.0 31000 44 1

Terminal 2: bin/test_msi_average 2 <server_ip_address> 31000 44 1

Figure 1: Run Neuralnet Benchmarks Examples

Terminal 1: bin/test_msi_microbenchmark 1 0.0.0.0 31000 44 <benchmark_choice>

<num_relus> <#threads>

Terminal 2: bin/test_msi_microbenchmark 2 <server_ip_address> 31000 44 <benchmark_choice>

<num_relus> <#threads>

Input Parameters:

1. <server_ip_address>: IP Address of Server.

2. <benchmark_choice>: 0 - ReLU6, 1 - ReLU.

3. <num_relus>: Number of ReLUs

4. <#threads>: Number of threads

if <num_relus> <=2, set <#threads>=1,

else if <num_relus> <=4, set <#threads>=2,

else if <num_relus> <=16, set <#threads>=4,

else if <num_relus> >16, set <#threads>=8.

Example:

Terminal 1: bin/test_msi_microbenchmark 1 0.0.0.0 31000 44 0 16384 8

Terminal 2: bin/test_msi_microbenchmark 2 <server_ip_address> 31000 44 0 16384 8

Figure 2: Run Neuralnet Micro-benchmarks


