
1 Artifact Appendix

1.1 Abstract

The evaluated artifact includes the prototype implementation
of ELASTICLAVE that we have presented in the paper. We
have publicly released it on GitHub.

Running the full set of experiments take significant long
time and relies on the AWS EC2 platform. Therefore, we also
provide the option to run them with QEMU, which, though
inaccurate for performance evaluation, serves well as a quick
way to test the system functionally. This option only requires
an x86-64 Linux system with Docker installed.

1.2 Artifact check-list (meta-information)
• Program: IOZone (included)

• Compilation: GCC cross compiler targeting RISC-V 64 (in-
cluded)

• Run-time environment: Linux (Ubuntu 20.04 LTS recom-
mended) with Docker

• Hardware: x86-64

• Metrics: Execution time

• Output: Performance numbers (execution time) in console
log files. Results are the differences in the performance among
different solutions

• Experiments: Run the benchmarks with the scripts we have
prepared. Compare the performance numbers produced with
different solutions and the difference should be on the same
order of magnitude as the results reported in the paper

• How much disk space required (approximately)?: 20 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approx-
imately)?: 30 hours

• Publicly available?: Yes

1.3 Description
1.3.1 How to access

This artifact is publicly released on GitHub1. The commit hash of
the evaluated version is 29aab39.

1.3.2 Hardware dependencies

It is necessary to run the artifact on an AWS EC2 and use FireSim to
obtain accurate performance data. For evaluation of the functionality,
any modern x86-64 Linux platform should suffice. The required disk
space is approximately 20 GB.

1The main repository (which references more repositories as submodules):
https://github.com/jasonyu1996/elasticlave

1.3.3 Software dependencies

This artifact is expected to run on any GNU/Linux distribution with
Docker installed.

1.4 Installation
We provide two options to run the artifact.

The first option requires running FireSim on an AWS EC2 F1
instance, and hence can incur significant monetary cost. In addition,
it takes much longer to run the experiments than the second option.
Since this is the option that provides cycle-accurate simulation, it is
necessary if the goal is to evaluate the performance of the system
and reproduce the experimental results.

The second option is to emulate the system on QEMU. It does
not incur extra cost and consumes less execution time. This option
is unable to produce accurate performance data and is only suitable
for testing the functionality.

We have automated most part of the installation process. Below
are the installation instructions for both options.

FireSim. On your AWS EC2 instance with FireSim set up, clone
the repository and checkout to the evaluated snapshot:

git clone https://github.com/jasonyu1996/elasticlave.git
cd elasticlave
git checkout 29aab39

Pull the submodules recursively:
git submodule update --init --recursive

Build:
./docker.sh
./docker-run.sh ./make-firesim.sh
./docker-run.sh ./make-firesim.sh image

Launch the simulated system:
./run-firesim.sh

It might help to understand what happens under the hood in the
script executed above.

The script first launches FireSim:
firesim launchrunfarm && firesim infrasetup && \

firesim runworkload

After this is finished, it logs into the newly launched F1 instance:
ssh RUNFARM_IP

, where RUNFARM_IP is the IP address of the F1 instance as reported
in firesim runworkload.

The script then connects to the terminal of the simulated system:
screen -r fsim0

When the simulation ends, the script terminates the F1 instance:
Terminate the F1 instance:

firesim terminaterunfarm

Below are instructions for use inside the connected terminal of
the simulated system.

The login is root and the password is sifive.
To run the benchmarks, execute the following inside the shell of

the prototype system:
insmod keystone-driver.ko
./tests.ke

https://github.com/jasonyu1996/elasticlave


There are also individual benchmarks that are not included in
tests.ke. To run them, execute the scripts in the individual folders.

After the benchmark execution completes, you can end the simu-
lation through:

poweroff -f

A log of the data on the terminal can be found inside
FIRESIM_FOLDER/deploy/results-workload.

QEMU. Install Docker following the instructions on the official
website.

Clone the repository and run the build scripts:

git clone https://github.com/jasonyu1996/elasticlave.git
cd elasticlave
git checkout 29aab39
git submodule update --init --recursive
./docker.sh

Run the artifact:

./docker-run.sh ./run.sh

The login is root and the password is sifive. The password is
sifive.

To run the benchmarks, execute the following inside the shell of
the prototype system:

insmod keystone-driver.ko
./tests.ke

There are also individual benchmarks that are not included in
tests.ke. To run them, execute the shell scripts (*.sh) in the indi-
vidual folders.

1.5 Experiment workflow
As described in Section 6, The experiments involve a range of bench-
marks which are run on our prototype ELASTICLAVE implementa-
tion. The benchmarks involve data sharing across enclave bound-
aries, and the total running time with the ELASTICLAVE model is
compared against that with the traditional spatial isolation model,
as well as the running time when they are run in a native Linux
environment without the protection of a TEE.

The prototype system runs an unmodified Linux kernel (with
a driver for enclave management). Each benchmark includes both
enclaves and untrusted code which runs as the host process and
launches the enclaves. For using the spatial isolation model, the
untrusted code is also responsible for marshalling messages.

1.6 Evaluation and expected results
The key claims made in this paper include:

1. Compared to the spatial ShMem model, our ELASTICLAVE

implementation achieves 1–2 orders of magnitude better per-
formance for data sharing. The overhead of ELASTICLAVE is
about 10% compared with native execution without a TEE;

2. ELASTICLAVE incurs modest TCB and hardware complexity
impact.

This artifact can be used to verify the following key results that
support the above claims:

1. The performance comparison among ELASTICLAVE, the spa-
tial ShMem model, and native execution for data sharing on
synthetic benchmarks and IOZone (corresponding to Figures 6,
7, 8, 10, and 11). This supports Claim 1 above.

2. The TCB increase of ELASTICLAVE over Keystone (corre-
sponding to Table 4). This supports Claim 2 above.

1.6.1 Performance

To obtain accurate performance numbers, it is necessary to run the
benchmarks using FireSim. See Section A.4 for details. The results
obtained from this artifact are expected to reflect the same patterns
as in Figures 6, 7, 8, 10, and 11 as well as the associated descriptions
in Section 6.1.

IOZone. Set TESTS=iozone in
tests/tests/mkconfig.mk, rebuild the benchmarks with
./docker-run.sh ./make-firesim.sh image. and execute
./tests.ke in simulation. This runs IOZone with ELASTICLAVE.
To run it with the baseline spatial ShMem model or a native Linux
setting, set NATIVE_TESTS or BASELINE_TESTS to iozone instead.

Thread synchronization. Set EXTRA_TESTS to lock (spin-
lock with ELASTICLAVE), lock-futex (futex with ELASTI-
CLAVE, lock-spatial (spinlock with the spatial ShMem model),
lock-native (futex without TEE) and rebuild the benchmarks.
Then execute ./tests.ke <thread-count> <work-amount> in
simulation. To get the numbers reported in the paper, supply 2 as
thread-count and vary work-amount from 12800 to 3276800.

Data sharing patterns. The names of the corresponding syn-
thetic benchmarks start with icall-, followed by the names of the
patterns (consumer, server, and proxy-3). Name endings indicate
whether the benchmarks are run with the spatial ShMem baseline
(spatial), ELASTICLAVE without exclusivity support (ne), or full
ELASTICLAVE (otherwise). To run the benchmarks, open the file
tests/tests/mkconfig.mk, add the benchmark names in the line
that starts with EXTRA_PACKS, and rebuild the benchmarks. The avail-
able benchmark names can be viewed in tests/tests.

1.6.2 TCB Increase.

To measure the TCB increase over Keystone, download the revision
of the original security monitor and enclave runtime from Keystone2.
Use diff -x ’.*’ -Nwr <old-dir> <new-dir> | diffstat
to compare the directories riscv-pk and sdk/rts/eyrie with
them and pipe the results to. The sums of insertion and modification
numbers are below the numbers reported in Table 4.

1.7 Experiment customization
You can adjust the benchmarks to be included in each run of the
artifact. To achieve this, edit the file tests/tests/mkconfig.mk,
and add the names of the benchmarks you want to run.

2https://github.com/keystone-enclave/riscv-pk/
tree/5b3d71 and https://github.com/keystone-enclave/
keystone-runtime/tree/87351c

https://github.com/keystone-enclave/riscv-pk/tree/5b3d71
https://github.com/keystone-enclave/riscv-pk/tree/5b3d71
https://github.com/keystone-enclave/keystone-runtime/tree/87351c
https://github.com/keystone-enclave/keystone-runtime/tree/87351c

