A Artifact Appendix
A.1 Abstract

FUGIO is the first automatic exploit generation (AEG) tool for
PHP object injection (POI) vulnerabilities. The artifact pro-
vides Docker images to reproduce the experiments performed
in the paper. We tested these Docker images and scripts on a
Ubuntu 18.04 machine. Each Docker container requires less
than 5 GB of disk, but it requires more disk spaces for run-
ning FUGIO that stores identified POP chains and generates
exploit objects to be fed to the fuzzer. We expect the artifact
reproduces evaluations in Sections 7.2 and 7.3, producing
Tables 1, 2, and 3 in the paper. Unfortunately, it might be hard
to expect the same experimental results as the paper since
FUGIO conducts fuzzing campaigns, and evaluations would
be conducted in machines with different specifications.

A.2 Artifact check-list (meta-information)

e Program: We evaluated FUGIO on 30 PHP applications:

— PHP 5.4: Contao CMS 3.2.4, Piwik 0.4.5, GLPI 0.83.9,
Joomla 3.0.2, CubeCart 5.2.0, CMS Made Simple 1.11.9,
Open Web Analytics 1.5.6, Vanilla Forums 2.0.18.5,
SwiftMailer 5.0.1, SwiftMailer 5.1.0, Smarty 3.1.28,
ZendFramework 1.12.20

— PHP 5.6: PHPExcel 1.8.1, PHPExcel 1.8.2, Dompdf
0.8.0, Guzzle 6.0.0, WooCommerce 2.6.0, WooCom-
merce 3.4.0, Emailsubscribers 4.4.0, EverestForms 1.6.6
(w/ WordPress 5.0)

— PHP 7.2: TCPDF 6.3.2, Drupal 7.78, SwiftMailer 5.4.12,
SwiftMailer 6.0.0, Monolog 1.7.0, Monolog 1.18.0,
Monolog 2.0.0, Laminas 2.11.2, Yii 1.1.20, TYPO3 9.3.0

All benchmarks are included in the benchmarks directory. The
artifact provides not only applications’ source code also dump
files of each application and its database for convenient set-
tings.

e Compilation: FUGIO requires some libraries to be compiled.
It needs only public compilers and the artifact provides all
scripts to compile the libraries.

e Run-time environment: The artifact runs on Docker contain-
ers. We tested our Docker images and scripts on a Ubuntu
18.04 host machine. Given Docker images might work on any
OS if it supports Docker.

e Output: After analyzing the target application, FUGIO gen-
erates 1) a PUT. When FUGIO identifies 2) a POP chain, it
saves it as a file. If a POP chain reaches the sensitive sink,
FUGIO reports the POP chain as 3) a probably exploitable
chain. If the POP chain invokes the sink with a parameter
containing the attack payload, FUGIO reports the POP chain
as 4) an exploitable chain. All outputs are generated in the
Files/fuzzing/[APP_PATH.TIME]/PUT directory.

1. PUT: put-head.php and put-body .php are PUT files;
inst_PUT.php is an instrumented PUT file for fuzzing
the target application.

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
é;usenlx é;usenlx susenix

ASSOCIATION @ #ssocion @ HssociTion

AVAILABLE REPRODUCED

2. POP chains: identified POP chains are stored as filename

3. Probably exploitable chains: probably exploitable pay-
loads are stored in the PROBABLY_EXPLOITABLE direc-
tory.

4. Exploitable chains: exploitable payloads are stored in
the EXPLOITABLE directory.

During FUGIO identifies POP chains and generates their ex-
ploits, it periodically shows the progress to the console: how
long FUGIO is running, how many POP chains are identi-
fied, how many POP chains are fed to the Fuzzer, how many
probably exploitable payloads are generated, and how many
exploitable payloads are generated.

e Experiments: We expect the artifact reproduces Tables 1,
2, and 3 in Sections 7.2 and 7.3. The artifact provides the
config.py script for preparing the corresponding environment
in which each experiment was conducted. However, it might
be hard to expect the same experimental results since 1) FU-
GIO conducts fuzzing campaigns, which randomly produces
results, and 2) evaluations would be conducted in machines
with different specifications; our evaluations were performed
on a Linux workstation equipped with 88 cores of CPUs and
384 GB of RAM.

e How much disk space required (approximately)?: Each
Docker container does not require more than 5 GB of disk.
However, FUGIO sometimes requires hundreds of GB depend-
ing on the target application since FUGIO identifies millions
of POP chains.

e How much time is needed to prepare workflow (approxi-
mately)?: Preparing Docker containers and FUGIO takes less
than an hour. Most of the time is spent on building the Docker
image and installing dependencies.

e How much time is needed to complete experiments (ap-
proximately)?: The running time of FUGIO depends on the
target application and the specification of the machine. For
each application, Table 1 provides the time spent in running
FUGIO on a machine equipped with 88 cores of CPUs. FUGIO
can be run up to 12 hours for each target application.

e Publicly available?: The artifact is released at https://
github.com/WSP-LAB/FUGIO-artifact/tree/v0.1l

A.3 Description
A.3.1 How to access

Users can access the artifact by cloning the repository from https |
//github.com/WSP-LAB/FUGIO-artifact/tree/v0.1l

A.3.2 Hardware dependencies

Although FUGIO does not require high-performance machines, it
is better to have many cores of CPU and large capacities of RAM
for parallel fuzzing. Note that we performed the experiments on a
machine equipped with 88 cores of CPUs and 384 GB of RAM.
The artifact requires less than 5 GB of disk for each Docker
container, but it requires more GBs for running FUGIO that stores
identified POP chains and generates exploit objects to be fed to


https://github.com/WSP-LAB/FUGIO-artifact/tree/v0.1
https://github.com/WSP-LAB/FUGIO-artifact/tree/v0.1
https://github.com/WSP-LAB/FUGIO-artifact/tree/v0.1
https://github.com/WSP-LAB/FUGIO-artifact/tree/v0.1

the fuzzer. Depending on the target application, it might require
hundreds GBs of disk space.

A.3.3 Software dependencies

We tested the Docker images and scripts on a Ubuntu 18.04 machine.
The artifact requires only Docker; thus, it might work on any OS if
it supports Docker. Other software packages will be installed using
the provided scripts.

A.4 Installation

1. Install Docker and set that you can run docker commands with
a non-root user.

2. Set up RabbitMQ by running the script run_rabbitmg. sh.

3. For each version of PHP, build Docker image using the script
1_docker_build.sh and run a Docker container using the
scripts 2_docker_run.sh and 3_docker_exec.sh.

4. In the Docker container, install dependencies for FUGIO by
running the script install_XX.sh, depending on the version
of PHP.

e PHP5.4: install_54.sh
e PHP 5.6: install_56.sh
e PHP 7.2: install_72.sh

5. Prepare environment for operating web applications. Start
Apache web server and MySQL using the script start. sh.
Then, make an account of MySQL using the script
create_user.sh.

* For more details, please refer to the artifact repository.

A.5 Experiment workflow

1. Prepare a target web application. The artifact provides dump
files of applications and databases for convenient settings. In-
stall all or each application using the script install.py.

2. Add .htaccess file for monitoring POI vulnerabilities by
running the script htaccess.py.

3. Prepare two terminals; one is for running FUGIO and the other
is for triggering POI vulnerabilities.

4. In the first terminal, run FUGIO wusing the script
run_FUGIO_XX.sh with the path of the target web ap-
plication’s source code.

5. In the other terminal, trigger the corresponding POI vulnera-
bility using the given scripts in the Trigger directory.

For more details, please refer to the artifact repository.

A.6 Evaluation and expected results

In the evaluations in Sections 7.2 and 7.3, we show that

1. FUGIO can automatically generate exploits for identified POP
chains with zero false positives

2. FUGIO can generate exploits for some of the POP chains
reported by Dahse et al.

3. FUGIO can generate new exploits compared to PHPGGC listed

using Tables 1, 2, and 3, respectively.

Table 1 shows that all exploitable chains that FUGIO generated
are indeed exploitable chains (the left number of the plus sign in true
positive chains). The number of true positive chains in Table 1 is
manually analyzed. For Table 2, we could not match each exploitable
chain since Dahse et al. did not provide the details of each chain.
Thus, we compared the numbers of exploit objects that FUGIO re-
ported with the numbers reported in their paper. Table 3 shows that
FUGIO reported new 32 exploitable chains that PHPGGC does not
list. PHPGGC provides templates for generating POP exploits. How-
ever, it is not clear that what POP gadgets each POP chain consists of.
Thus, we provide POP chains from PHPGGC in the FUGIO reposi-
tory (https://github.com/WSP-LAB/FUGIO). FUGIO repository
also includes a utility for helping the analysis of the generated POP
chains. For more details, please refer to the artifact repository.

The followings are steps for reproducing Tables 1, 2, and 3. First,
please follow the installation step described in Second, for
each target application, follow the instructions described in[A.3] Tt
takes much time to reproduce all target applications. We recommend
selecting target applications that take less time and produce many
exploits. When FUGIO finished analyzing the target application,
FUGIO generates a dump file of summaries, which is stored in the
directory Files/dump_files. When triggering a POI vulnerability
of the target application using the given script, crawler, or other
tools, FUGIO generates a PUT, which is stored in the directory
Files/fuzzing/[APP_PATH.TIME]/PUT. When FUGIO identifies
a POP chain, it saves it as a file in the same directory of the PUT
file. If a POP chain reaches the sensitive sink, FUGIO reports the
POP chain as a probably exploitable chain. If the POP chain invokes
the sink with a parameter containing the attack payload, FUGIO
reports the POP chain as an exploitable chain. Such explot objects are
saved in the PROBABLY_EXPLOITABLE and EXPLOITABLE directories,
respectively. FUGIO also prints the number of the identified POP
chains, probably exploitable chains, and exploitable chains to the
console. The results can be compared with Tables 1, 2, and 3 in the

paper.


https://github.com/WSP-LAB/FUGIO

