
A Artifact Appendix

For Midas, we present an artifact including the source code
and binaries for the prototype based on Linux, an exploit
which demonstrate that Midas mitigates a real CVE, and
benchmarks for evaluating Midas’ performance, and scripts
which simplify the process. In the following sections, we
describe the artifact, its requirements and how to run it,
and what the expected results are. Visit the project website
https://hexhive.epfl.ch/midas for more details.

A.1 Description

The primary artifact for this paper is the code implementing
Midas on the Linux kernel (v5.11), available on GitHub. We
also provide a disk image suitable for recreating experiments
from this paper, containing the kernel as both source code
and as compiled binaries. The disk image contains the CVE
exploit used to test correctness in the paper, all benchmarks
evaluated in the paper, and scripts to run these. This image
allows recreation of all emperical evidence presented in the
paper’s evaluation. Finally, we provide further information
on the project website including a detailed description of the
artifact, its contents, how to run it and expected outputs.

• Source code: https://github.com/HexHive/midas
• Disk image: https://zenodo.org/record/5753026
• Project website: https://hexhive.epfl.ch/midas

A.1.1 Hardware Dependencies

You can run the disk image within a QEMU virtual machine
to test functionality. The host machine requies around 100GiB
free disk space and at least 8GiB memory. You should run
the disk image on a real machine for performance tests. Our
Midas prototype supports machines with 64-bit x86 proces-
sors, and the results in the paper were obtained on a machine
with an Intel i7-9700 CPU. Further, the real machine requires
an empty 1TiB disk, and a EUFI-enabled motherboard. In
both setups, a SSD is preferred for storage, as it leads to faster
compilation should you choose to re-compile the kernel. Eval-
uating the Nginx benchmark requires a second, networked
machine to act as a load generator.

A.1.2 Software Dependencies

Running the Midas disk image requires a guest operating sys-
tem which supports running QEMU. The image was tested on
QEMU version 4.2.1 on a machine running Ubuntu 20.04
with Linux kernel version 5.4.0-88-generic. Other virtual-
ization software should also be supported, but the instructions
focus on QEMU. Running the disk image on real hardware
requires no special software support, apart from a tool to write
the image to a disk. On Linux, we can use dd.

A.2 Installation
The installation procedure includes downloading and uncom-
pressing the provided compressed disk image, then either
running a VM directly from this image, or by writing the
image to a disk and booting from it.

On Linux, the following command extracts the image.

pv ae.img.xz | unxz -T <num threads> > ae.img

The uncompressed disk image can then either be run with
QEMU, or written to a real disk. To run with QEMU, an
example command is shown below.

qemu-system-x86_64 \
-m 4G \
-cpu host \
-machine type=q35,accel=kvm \
-smp 4 \
-drive format=raw,file=ae.img \
-display default \
-vga virtio \
-show-cursor \
-bios /usr/share/ovmf/OVMF.fd \
-net user,hostfwd=tcp::2222-:22 \
-net nic

To run on real hardware, copy the image to a real disk using
the command shown below, then install into the machine and
start it.

dd if=ae.img of=/dev/<disk> bs=100M

A.3 Experiment Workflow
The experimental workflow compares the modified Midas
kernel with the baseline Linux kernel. Detailed steps are avail-
able on the website at https://hexhive.epfl.ch/midas/
docs/ae.html. You can validate the artifact by executing the
following steps:

• Check that the code modifications described in the paper
correspond to the code.

• Compile the code to re-create the kernel binary.
• Run a script to check that a CVE exploit is mitigated, as

claimed in the paper.
• Run scripts to execute the benchmarks presented in the

paper, to verify their reported performance.
For the CVE exploitation test, the dmesg output must be

checked to ensure that Midas prevents exploitation. For the
performance experiments, the results must be compiled and
compared to get the Midas’ relative performance. The general
workflow is:

• boot with the correct kernel (baseline or Midas),
• run the script for the benchmark/CVE exploit,
• reboot with the other kernel, and
• run the same script again.

https://hexhive.epfl.ch/midas
https://github.com/HexHive/midas
https://zenodo.org/record/5753026
https://hexhive.epfl.ch/midas
https://hexhive.epfl.ch/midas/docs/ae.html
https://hexhive.epfl.ch/midas/docs/ae.html


A.4 Expected Results
Midas is evaluated to demonstrate effective mitigation of
double-fetch bugs with low overhead. The artifact enables you
to verify this claim, that the prototype provides the claimed
protection and that it performs as claimed. We demonstrate the
first property by including checks in the kernel and running
an exploit for CVE-2016-6516 to demonstrate its mitigation.
The remaining benchmarks measure performance, either as
operations per second or as time taken to finish each operation.
Below, we describe how to interpret the outputs of running
the exploit and benchmarks.

Midas protects the kernel against double-fetch bugs, and in
particular mitigates an exploit for CVE-2016-6516. In our pro-
totype, you will execute the exploit with and without Midas’
protections. When run with the baseline kernel, the exploit is
triggered, and the string "Triggered bug: CVE-2016-6516!"

will be printed to dmesg output. With the Midas kernel, the
string is never printed.

We also run kernel-intensive benchmarks which demon-
strate that Midas has a low runtime overhead. Our artifact
also contains the performance benchmarks used for testing
Midas’ performance. The benchmarks must be run separately
with both the baseline and Midas kernel. We include a script
to plot the relative performance vs. the baseline kernel. Mi-
das’ performance is strongly dependent on the CPU used for
evaluation, and exact performance values can vary signifi-
cantly. However, we expect the trends of performance across
benchmarks to roughly follow the following limits.

• Microbenchmarks see results in line with paper.
• NPB benchmarks experience 0-5% overhead, and should

follow the numbers from the paper.
• PTS benchmarks - openssl, git, pybench, redis see an

overhead <1%.
• PTS benchmarks - apache sees a overhead < 10-15%.
• PTS benchmarks - IPC benchmark sees overhead < 5%.
• Nginx shows a constant overhead as request size changes,

until the network link is saturated.
The setup for breaking down Midas’ overhead is compli-

cated, and omitted from this artifact.

A.5 Artifact meta-information
• Program: NASA Parallel Benchmarks (NPB),

Phoronix Test Suite (PTS), Nginx, the Linux kernel, and
exploits for CVE-2016-6516. All benchmarks and code
are publicly available, and are installed in the provided
disk image.

• Binaries: The disk image provides the compiled Linux
kernel (v5.11) with and without Midas’ protections.

• Hardware: For functionality evaluation, one machine
with 100GiB free disk space, and QEMU (version 4.2).
For results reproduction, one machine with modern Intel
x86 CPU, and a free 1TiB disk. In both setups, a SSD is
preferred.

• Run-time state: The disk image includes a program
for fixing CPU frequency, eliminating run-time variance.
This only works on native hardware, not QEMU.

• Metrics: NPB workloads report execution rate. PTS
workloads report either execution time or operation rate.
Nginx reports both request rate and throughput.

• Output: Most benchmarks and tests output to a console.

• Experiments: Experiments have been prepared within
the disk image, and can be run using provided scripts.

• How much time is needed to prepare workflow (ap-
proximately)?: 3-4 hours, on a machine with an SSD.

• How much time is needed to complete experiments
(approximately)?: For performance evaluation, approx.
8 hours.

• Publicly available?: All code is publicly available.

• Code license: GPL v2.0

• Archived (provide DOI or stable reference)?: DOI
10.5281/zenodo.5753026 available at https://zenodo.
org/record/5753026.

https://zenodo.org/record/5753026
https://zenodo.org/record/5753026

