
A Artifact Appendix

A.1 Abstract
We provide code, data, and outputs of our experiments.
Our artifact is publicly available at https://github.com/
Yuanyuan-Yuan/Manifold-SCA with detailed documents.
Using our tool, users can perform side channel attacks on
media software and localize side channel vulnerabilities of
the target software. We also provide a mitigation scheme to-
wards our attack and investigate the noise resilience of our
attacking technique.

A.2 Artifact check-list (meta-information)
• Data set. See README in our artifact.

• Run-time environment. Our experiments are launched on 64-
bit Ubuntu 18.04, we recommend users to set up on the same
OS. We also provide a docker container with everything set up.
Performing Prime+Probe attack needs root access.

• Hardware. We perform Prime+Probe attacks on Intel Xeon
and AMD Ryzen CPUs. Nevertheless, our approach is not
hardware-specific. Users can use our tools on other CPUs. To
approximate manifold from known data (i.e., the training split),
users are recommended to run scripts on GPUs. Note that our
tool requires a relatively large RAM.

• Execution. Our experiments are launched on one Nvidia
GeForce RTX 2080 GPU. The running time of approximating
manifold (i.e., training models) is less than 24 hours. Never-
theless, it will be very slow if the script is executed with only
CPUs. We have released our trained models. The data process-
ing and side channel logging are also time-consuming, which
may take several days. We also provide our processed data and
logged side channels.

• Security, privacy, and ethical concerns. Our tool is provided
as-is and is only for research purposes. Please use it only on
test systems with no sensitive data. Users are responsible for
protecting themselves, their data, and others from potential
risks caused by our tool.

• Output. Our outputs include 1) logged side channel records;
2) trained models which appropriate data manifold; 3) recon-
structed media data from unknown side channel; 4) localized
side channel vulnerabilities of media software.
We release 1) scripts for logging side channels and our logged
side channel records; 2) scripts for training models and our
trained models; 3) scripts for reconstructing media data from
unknown side channels (i.e., the test split) and our recon-
structed media data; 4) scripts for localizing side channel vul-
nerabilities and our localized vulnerabilities. Some vulnerabili-
ties have been explored by previous works, and the new-found
vulnerabilities have been confirmed by developers of FFmpeg
and libjpeg by the time of writing. See outputs for more
details.

• How much disk space required (approximately)? We pro-
vide 1K samples of processed data and side channel records for
each dataset and software. We also provide our trained models

and a docker container. To launch experiments using these data
samples, which are sufficient to verify our findings, users need
to prepare at least 20G space. Further, if users want to prepare
all data (we also provide the scripts), 2T space is desired.

• Experiments. We provide 1K samples of processed data and
side channel records for each dataset and software. These sam-
ples are sufficient to verify our statements and results, for in-
stance, reconstructing high-quality media data from side chan-
nel records and mitigating side channel attack using perception
blinding (e.g., perceptual properties of reconstructed images
are dominated by the mask).
Since experiments are performed on a limited number of data,
some numerical results may have relatively large variances.
Also, it’s worth noting that the 1K samples are not enough to
train the model (i.e., the trained model has a poor capability of
reconstructing media from unknown side channels), but users
can see that the reconstructed media data from known side
channels gradually have higher quality and get similar to the
reference media data. Users can use our provided scripts to
produce all data involved in our paper.

• How much time is needed to prepare workflow/complete
experiments (approximately)?
1) Set up the environment: less than 1 hour. We also provide a
docker container with everything set up.
2) Download public datasets and process: it requires less than
1 hour to process the data. We provide our processed data
samples.
3) Log side channels: around one week to log side channels
of all media and target software. We provide our logged side
channels.
4) Train models: training one model requires less than 24 hours
on one Nvidia GeForce RTX 2080 GPU. Our script also sup-
ports training on CPUs, but it could be time-consuming. We
also release our trained models.
5) Others: a few minutes.

• Publicly available? Our artifact is publicly available at https:
//github.com/Yuanyuan-Yuan/Manifold-SCA.

• Code licenses (if publicly available)? MIT license.

• Data licenses (if publicly available)? CC-BY-4.0 license.

• Workflow frameworks used? We use Pytorch as the building
block of our framework.

• Archived (provide DOI or stable reference)? Available at
https://zenodo.org/record/5816702#.YdQMHxNByjA.

A.3 Description
See all details in our README.

A.3.1 How to access

Access our artifact at https://github.com/Yuanyuan-Yuan/
Manifold-SCA.

A.4 Installation
See README. We also provide a docker container with everything
set up.

https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA/blob/main/README.md
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://zenodo.org/record/5816702#.YdQMHxNByjA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA
https://github.com/Yuanyuan-Yuan/Manifold-SCA/blob/main/README.md
https://github.com/Yuanyuan-Yuan/Manifold-SCA


A.5 Evaluation and expected results
We show that side channel analysis (SCA) towards media soft-
ware can be largely boosted by manifold learning, which recasts
SCA as mapping between side channels and media data via a low-
dimensional joint manifold. Enabled by the neural attention mecha-
nism, we can localize side channel vulnerabilities of media software
by investigating which records on a logged side channel trace con-
tribute most to the reconstruction of media data. Our findings have
been confirmed by the software developers. We further propose the
perception blinding that is highly effective for mitigating manifold
learning-based side channel attacks. We also show that our approach
is highly robust to noise in collected side channels.
Side Channel Attack. By using our released tools, users can log
side channel records of the target software when it is processing
private data. Based on the collected side channels and corresponding
media data, users can train a model to appropriate the manifold.
The trained model can reconstruct high-quality media data from un-
known side channels (i.e., the test split of each dataset). We provide
our trained models and 1K data samples (from test split). Using
our trained models, users can observe that the reconstructed media
data manifest consistent perceptual properties with the reference
media data. Note that some numerical results (e.g., the text inference
accuracy) may have large variances since they are calculated on
only a few samples. Also, the provided data samples are not enough
for training models, but users can still observe that the manifold
(despite its poor generalization capability) is gradually formed when
training models on these samples. To prepare all data records, which
require roughly 2T space, users can download the public datasets
and process them using our scripts. It’s worth noting that due to the
non-deterministic operations of Pytorch, training results and some
inference results may be slightly different each time, but findings
and conclusions derived from these results are consistent. Moreover,
the results always largely outperform the baseline.
Localizing Side Channel Vulnerabilities. Users can use our scripts
to localize side channel vulnerabilities once the manifold is formed.
For instance, to investigate records produced by which functions in
libjpeg contribute most to reconstructing images, users are ex-
pected to observe that idct and mcu related functions have the
highest frequency. We also provide our localized vulnerabilities.
Some vulnerabilities have been exported by previous works, and the
new-found ones have been confirmed by developers. Note that the
produced results on the 1K samples may be slightly different from
our provided results. That is reasonable since the frequency of each
localized function could have a relatively large variance on only a
few examples.
Perception Blinding. We provide scripts for users to perform per-
ception blinding on media data. We also provide blinded images and
corresponding side channel records. Users can observe that given
the side channels of blinded images, our framework can hardly re-
construct privacy—the perceptual properties are dominated by the
blinding masks. Users can also use our scripts to produce other
blinded data and use their customized blinding masks.
Noise Resilience. We show that our technique is robust towards
noise in collected side channels. By using our provided scripts, users
can introduce noise of various types and weights into side channels.
The reconstructed media data from noisy side channels are still
of high quality and manifest most of the perceptual properties of
reference media data.

A.6 Experiment customization
Our artifact supports customized settings. More specifically, users
can customize 1) the media datasets, 2) hardware platforms, 3) target
software, 4) model architectures, 5) training parameters when ap-
propriating manifold, 6) blinding masks, 7) noise insertion schemes.
We provide APIs for customized settings; see details in README.

https://github.com/Yuanyuan-Yuan/Manifold-SCA

