
A Artifact Appendix

A.1 Abstract
In the paper, we propose flow- and context-sensitive static
analysis with hybrid branch-sensitivity and points-to infor-
mation to generate a novel graph structure, called Object De-
pendence Graph (ODG), using abstract interpretation. ODG
represents JavaScript objects as nodes and their relations
with Abstract Syntax Tree (AST) as edges, and accepts graph
queries—especially on object lookups and definitions—for
detecting Node.js vulnerabilities.

We implemented an open-source prototype system, called
ODGEN, to generate ODG for Node.js programs via abstract
interpretation and detect vulnerabilities. Our evaluation of
recent Node.js vulnerabilities shows that ODG together with
AST and Control Flow Graph (CFG) is capable of modeling
13 out of 16 vulnerability types. We applied ODGEN to detect
six types of vulnerabilities using graph queries: ODGEN
correctly reported 180 zero-day vulnerabilities, among which
we have received 70 Common Vulnerabilities and Exposures
(CVE) identifiers so far.

In this artifact evaluation, we claim that OPGEN is capable
of detecting all six types of vulnerabilities and found all the
zero-day vulnerabilities.

A.2 Artifact check-list (meta-information)
• Algorithm: Mining Node.js Vulnerabilities via Object

Dependence Graph and Query

• Data set: We use the self-generated dataset and it is
included in the docker image

• Run-time environment: Ubuntu 20.04 is recom-
manded and tested. The main software dependencies
are Python 3.7+, pip, npm, and Node.js 12+

• Run-time state: No

• Metrics: Number of detected vulnerable packages

• Output: The testing results are located in the "logs"
folder of the running directory. All the detected vulnera-
ble packages will be output to the "succ.log" file; All the
un-detected packages will be output to the "results.log"
file. You can get the number of the successfully detected
packages by running "cat ./logs/succ.log | wc -l", during
or after the running process.

• Experiments: You can download and load the docker,
or set up the environment from the source code. Then
run the pre-written scripts and see the results.

• How much disk space required (approximately)?:
10GB

• How much time is needed to prepare workflow (ap-
proximately)?: 10 to 30 mins

• How much time is needed to complete experiments
(approximately)?: 200 mins

• Publicly available?: Yes

• Code licenses (if publicly available)?: GPL v3.0

• Data licenses (if publicly available)?: GPL v3.0

• Archived (provide DOI)?:

A.3 Description
A.3.1 How to access

We provide two methods for testing, loading the docker image
is highly recommanded:

• A docker image

We uploaded our docker to Docker Hub. You can pull it
by running

docker pull iamthesong/odgen:latest
Then you can attach to this docker by running

docker run -it iamthesong/odgen bash
After loading it, you should be able to see the environ-
ment

• A repository for the source code

If you are not able to access the virtual ma-
chine and can not load the docker image, you
can also try to clone our source code from
the GitHub repository https://github.com/Song-
Li/ODGen/tree/24d68fa810cae8c028cf36f269461e178c198c98
(commit hash: 24d68fa810cae8c028cf36f269461e178c198c98)
and follow the instructions in the README.md to set
up the environment.

A.3.2 Hardware dependencies

Recommended

• CPU: 16 cores

• Memory: 16GB

Minimum

• CPU: 4 cores

• Memory: 4GB

A.3.3 Software dependencies

If you want to start with the source code, Ubuntu 20.04 is
recommended. This artifact requires Python 3.7+, pip, npm,
and Node.js 12+.

A.4 Installation

A.4.1 Docker image

We prepared a docker image on Docker Hub. You can follow
the commands mentioned in section A.3.1 to download the
load the docker.

A.4.2 Source code

Setup the Environment If you want to start with the source
code, we recommend you to use Ubuntu 20.04., you can
simply cd into the source code folder and install the software
dependencies by running:

./ubuntu_setup.sh
After the packages are successfully installed, you can setup

the environment by running:
./install.sh
The script install.sh will install a list of required Python

and Nodejs dependencies. Once finished, the environment is
setup and we are ready to go.

Verify the Installation You can run the script
odgen_test.py to verify the installation. The command is:

python3 ./odgen_test.py
If the environment is successfully set up, you should be

able to see the tests are finished without errors. The end of
the outputs should be like:

Ran 3 tests in XXXs
OK

A.5 Experiment workflow

As we claimed in the Abstract section and the Contributions
part of section 1 in our paper, our main claim that needed to be
evaluated is we found 43 application-level and 137 package-
level zero-day vulnerabilities. Our tool can successfully found
the vulnerabilities of those packages. We prepared the dataset
and the related scripts to run our tool on top of the packages.

Besides the main claim, other evaluation results, including
the performance, the code coverage, and the false-negative
rate of our paper are also reproducible and reproduced by
the reviewers. I will also include the steps and datasets to
reproduce the related evaluation results in the next section.

A.5.1 File organization of our Docker Image

Once you log into the docker, all the files and folders are
organized as follows:

A.5.2 Dataset

Dataset 1: Zero-day vulnerable packages

• dataset: The 174 zero-day vulnerable packages that
found by our tool. (Note that after our reporting, there
are eight packages that are unpublished from NPM. Cur-
rently, we only have source code for 173 packages + one
package, which is unpublished but cached on our server.)

• location: ∼/packages

• the CVEs they got: ∼/packages/xx/package-
name@version/cve.txt (if exists)

• a script that runs the analysis on each of these
folders/projects and detects the vulnerabilities:
∼/packages/xx/package-name@version/run.sh

where xx = code_exec, ipt, os_command, path_trasversal,
proto_pollution, and xss.

Note that considering the large size of the dataset, we are
not able to upload the dataset to the GitHub repository. We
uploaded the zipped dataset to Google Drive and if you are
testing it by the source code, please download it, unzip it, and
put it in the root directory of your machine.

Dataset 2: Legacy vulnerable packages

• dataset:The legacy vulnerable packages dataset men-
tioned in Section 6.3 of the paper, including 75 com-
mand injection vulnerable packages, 31 code execution
vulnerable packages, 52 prototype pollution vulnerable
packages, 87 path traversal vulnerable packages, and 11
internal property tampering (IPT) vulnerable packages.

• location: We uploaded it as a zip file to the GitHub Repo
(https://github.com/Song-Li/legacy_benchmark)

Dataset 3: Randomly selected packages

• dataset: The 500 randomly selected packages from the
NPM database.

• location: We uploaded it as a zip file to the GitHub Repo
(https://github.com/Song-Li/random_500_npm.git)

https://drive.google.com/file/d/1IiuQoMV4a2QAzwswEq9fSKXcZpNuGYP0/view?usp=sharing
https://github.com/Song-Li/legacy_benchmark
https://github.com/Song-Li/random_500_npm.git

A.5.3 Play with the examples

In the ∼/examples folder of the Docker image, we have a
few simple vulnerable examples for you to get familiar with
our tool. You can try the run_ipt.sh, run_os_command.sh
or run_proto_pollution.sh to run our tool on top of the
pp_example.js(a prototype pollution) example and the moti-
vating_example.js(the motivating example introduced in our
paper). You can also write your modules, use a similar com-
mand and test them out.

A.6 Evaluation and expected results
A.6.1 Evaluation

Zero-day vulnerable packages detection (Dataset 1) To-
tally we have six different types of vulnerabilities, they are
command injection, code execution, prototype pollution, path
traversal, cross-site scripting, and internal property tampering.
Each of them can be tested by running a command in the root
directory of the source code:

• Command injection: ./scripts/os_command.sh

• Code execution: ./scripts/code_exec.sh

• Prototype pollution: ./scripts/prototype_pollution.sh

• Path traversal: ./scripts/path_traversal.sh

• Cross-site scripting: ./scripts/xss.sh

• Internal property tampering: ./scripts/ipt.sh

To reproduce the results, you can pick a vulnerability type
and run the corresponding script.

Note that the scripts will try to run our tool parallelly, so you
will not see the progress. Once you run a script, you should
be able to see a message that says "new instance". You can
check how many processes are still running by the command:
screen -ls. You can also attach to a specific process by running:
screen -r XXX(XXX means the name of the screen). Once all
the processes are finished, you can check the result and run
another script.

The testing results are located in the logs folder of the run-
ning directory. All the detected vulnerable packages will be
output to the succ.log file; All the un-detected packages will
be output to the results.log file. You can get the number of the
successfully detected packages by running cat ./logs/succ.log
| wc -l, during or after the running process.

If you finished checking one vulnerability type, please run
./clean.sh to remove the logs and temporary files before check-
ing another one.

Note that since the order of the testing functions is ran-
domized, you may encounter some un-detected packages.
For the un-detected packages, you may run them indepen-
dently follow the instructions in README.md, or, go to
∼/packages/vulneralbility-type/package-name@version/ and
run the run.sh

False negative rate (Dataset 2) The false-negative rate is
introduced in Table 9 of the paper, which is measured on top
of the legacy vulnerable packages. The steps to reproduce it
is:

• Login to our Docker by the command docker run -it
iamthesong/odgen bash

• Make sure you are in the root directory of the
docker, and download the dataset by git clone
https://github.com/Song-Li/legacy_benchmark.git

• Go into the downloaded dataset by cd
legacy_benchmark/ and unzip the dataset by un-
zip legacy_benchmark.zip

• Go into the source code directory by cd /projs/ODGen/.
Test a type of vulnerability by ./odgen.py -t VUL_TYPE --
list /root/legacy_benchmark/VUL_TYPE.list -aq --nodejs
--timeout 120 --parallel 16

Note that

• There are two locations in the last command that
use VUL_TYPE. VUL_TYPE should be replaced by
os_command, ipt, proto_pollution, path_traversal or
code_exec

• The --parallel argument is used to run ODGen parallelly.
In my case, I use 16 to indicate that I want to run 16
processes together. You can adjust the argument based
on the number of CPU cores of your device

• The --timeout argument is used to set the timeout of a
single test. We recommend 300 to make sure it works.
In most cases, 120 should be enough.

If the number is less than expected, we need to run multi-
ple times on those packages. You can simply run the same
command multiple times (without cleaning the logs), and the
results will be logged to the /root/projs/ODGen/logs/succ.log
file, cumulatively. To remove the duplicates, you can go into
the /root/projs/ODGen/logs/ folder and run awk ’!x[$0]++’
succ.log > outfile.succ. The generated file outfile.succ will be
the detected list.

Code coverage (Dataset 3) The code coverage rate is in-
troduced in Figure 9 of the paper, which is measured on top of
the 500 randomly selected Node.js packages. We prepared the
statement-level code coverage API and the randomly selected
500 packages for testing.

Steps to reproduce:

Table 1: Expected Detection Results for Zero-day Vulnerable Packages
Command Injection Code Execution Prototype Pollution Path Traversal Cross-site Scripting IPT

#Packages 80 14 19 30 13 24
#Unpublished 2 4 0 0 0 0
#Expected 76∼78 9∼10 17∼19 30 12∼13 23∼24

Table 2: Expected True Positive Packages on Legacy Vulnerable Packages
Command Injection Code Execution Prototype Pollution Path Traversal IPT Total

#Packages 75 31 52 87 11 256
#Claimed True Positive 67 20 40 55 7 189
#Expected True Positive 67 20∼21 39∼40 55∼ 56 7∼ 10 189∼194

Table 3: Reproduced Code Coverage Rate
Code Coverage Percentage of Packages
0% to 10% 5.52%
10% to 20% 5.25%
20% to 30% 8.01%
30% to 40% 2.76%
40% to 50% 2.76%
50% to 60% 6.63%
60% to 70% 2.76%
70% to 80% 6.35%
80% to 90% 11.60%
90% to 100% 48.34%

• Login to our Docker by the command docker run -it
iamthesong/odgen bash

• Make sure you are in the root directory of the
docker, and download the dataset by git clone
https://github.com/Song-Li/random_500_npm.git

• Go into the downloaded dataset by cd random_500_npm/
and unzip the dataset by unzip ./random_500.zip

• Go into the source code directory by cd /projs/ODGen/.

• Update the source code to the latest version by git pull

• Start the testing by running ./odgen.py -t os_command
-ma –list /random_500_npm/random_500.list --timeout
30 --parallel 20

• During the running process, you can go to the tools folder
by cd /root/projs/ODGen/tools and check the results on
the fly by running python get_code_coverage_dis.py.
This script will output the results directly. You can run
this command multiple times to see how the code cover-
age changes during the evaluation.

You can check how many processes are running by screen
-ls. If all processes are finished, you can check the final

result. Note that the code coverage raw data is logged in
ODGen/logs/stat.log. You can also take a look if you want!

Note that not all of the packages will report code coverage,
There are two reasons for that:

• Since the packages are randomly selected, there are many
packages that do not meet the requirement of the NPM
standard. For example, some of them do not have an
entrance file, some of them do not include a package.json
file, and some of them are demo packages without any
meaningful content. For those packages, ODGen will
not report the code coverage;

• It is possibly happening for packages running into a time-
out. ODGen will not output the code coverage results
for timeout packages since those results can not reflect
the real code coverage of ODGen.

A.6.2 Expected results

Zero-day vulnerable packages detection The number of
all the packages, unpublished packages, expected detected
packages and the estimated running time are listed in Table 1

False negative rate The number of all the packages,
claimed true positive packages, expected detected packages
are listed in Table 2

Code coverage The distribution of the code coverage
should be comparable to Figure 9 of the paper. The results
that reproduced by the reviewers are listed in Table 3

A.7 Troubleshooting

Zero-day vulnerable packages detection If you can not
get the expected results, you can try to restart the docker and
see if it can run smoothly without the influence of the cache.

False negative rate If you can not get the expected results,
you can try to:

• When you run the tool multiple times, try to change the
number of --parallel each time. For example, we can use
--parallel 17 for the first time, and --parallel 19 for the
second time. In that way, each process may start from
different packages and it may be faster to generate the
results.

• Since the number of packages with code execution vul-
nerability is not very large. If your device has enough
computing resources, for example, more than 20 CPU
cores. You can try to set the --parallel argument to --
parallel 31 to make sure every vulnerable package can
use an independent process. After doing this, you can
check how many packages are still running by using
screen -ls.

A.8 Experiment customization
You are very welcome to test our tool on top of your cus-
tomized packages. To do so, please go to the ∼/example
folder and write your package follow the NPM package stan-
dard, or write a module like the ∼/example/pp_example.js
and the ∼/example/motivating_example.js.

Once you prepared the module, you can check out the
README.md file in the source code repository and follow
the instructions to run the corresponding commands.

https://github.com/Song-Li/ODGen/blob/master/README.md

