
A Artifact Appendix
A.1 Abstract

This artifact appendix describes the complete workflow to
setup Bedrock. It includes an artifact check-list, description of
hardware/software dependencies, experiment workflow, and
the expected results.

A.2 Artifact check-list (meta-information)
• Compilation: GCC v7.5.0, Tofino SDE v8.4.0, Netronome

SDE v6.1.0.

• Binary: Source code included to generate binaries.

• Run-time environment: End host codes are tested on x86
servers running 64-bit Ubuntu18.04 OS with BPF compiler
collection. Both servers and switch need root access.

• Hardware: Intel/Barefoot Tofino1 switch ×1, x86 server with
Mellanox ConnectX-4 RNICs ×4, x86 server with Netronome
Agilio CX ×1.

• Metrics: Throughput, latency, CPU utilization, attack and
defense effectiveness.

• Output: The server, client and attacker programs output mes-
sages indicating whether the attack succeeds. Throughput and
latency can be measure by tools like tcpdump. CPU utilization
can be measurement via tools like top.

• Experiments: See Section A.5 and Section A.5.

• How much disk space required (approximately)?: 1GB
(dependencies not included).

• How much time is needed to prepare workflow (approxi-
mately)?: Compiling all programs needs about 1 hour (instal-
lation of software dependencies and hardware is not included).

• How much time is needed to complete experiments (ap-
proximately)?: About 2 hours to see the effect of all attacks
and defenses.

• Publicly available?: Yes, code is available on GitHub.

• Code licenses: MIT license

A.3 Description

A.3.1 How to access

Bedrock is publicly available at the following GitHub repos-
itory: https://github.com/alex1230608/Bedrock. (commit:
4eef2619d7fb007b4c8ed690c6d78e8fea377455)

A.3.2 Hardware dependencies

To run Bedrock, it requires four x86 servers connecting to
an Intel/Barefoot Tofino switch or a Netronome Agilio CX
SmartNICs through Mellanox ConnectX-4 RNICs.

A.3.3 Software dependencies

Our experiments are performed on x86 servers running 64-
bit Ubuntu 18.04, but similar Linux distributions should also
work. To enable RDMA, Mellanox MLNX_OFED driver
must be installed on the servers. Bedrock’s P4 code is com-
piled by proprietary toolchains provided by the switch and
SmartNIC vendors.

A.4 Installation

We list the main steps to install Bedrock here. More details
can be found in our GitHub repository.

• Install the BPF Compiler Collection (BCC) on end hosts
for eBPF module compilation and loading.

• Install RNIC drivers to enable RDMA on end hosts.

• Install and setup the programmable switch and Smart-
NICs following the vendor instructions.

A.5 Experiment workflow

We briefly summarize the workflow of running experiments
on Intel/Barefoot Tofino switches in Bedrock; detailed instruc-
tions can be found in the provided README in our GitHub
repository. Note that all experiments in Bedrock share the
similar workflow as described in the following.

1. Compile P4 program: Compile the P4 programs using
Intel/Barefoot Tofino switch SDE.

2. Run Bedrock or baseline: Run P4 programs
on the switch. Both Bedrock’s programs (i.e.,
switch/bedrock_*.p4) and the baseline program (i.e.,
switch/baseline.p4) are provided.

3. Load eBPF modules (for authentication experiments
only): Load Bedrock’s eBPF module on the RDMA
servers and clients for authentication experiments.

4. Setup the logging server (for logging experiments
only): Setup and start the logging server for logging
experiments.

5. Compile and run RDMA servers, clients, and attack-
ers: All needed end host programs (i.e., RDMA server,
RDMA client, and attacker) can be compiled with make
in the corresponding folders. Folder and file names are
summarized in Table 4.

A.6 Evaluation and expected results

We evaluate Bedrock in different attacking scenarios. The
following describes the expected results:

Authentication: We uses attack S1 to demonstrate effective-
ness of proposed source authentication in Bedrock. When the
experiment starts, the server terminal will keep dumping the
memory content. The attack can be launched by setting the
victim client’s QPN, PSN, and rkey in the attacker program.
Without Bedrock (baseline.p4), the memory content will
keep changing, indicating that the attacker illegally accesses
the memory. By deploying Bedrock, the attack will be blocked
and the memory content will remain the same.

ACL: Bedrock enables more flexible ACLs inside the network.
In this experiment, when Bedrock is not started, all RDMA

https://github.com/alex1230608/Bedrock
https://github.com/alex1230608/Bedrock
https://github.com/alex1230608/Bedrock/tree/4eef2619d7fb007b4c8ed690c6d78e8fea377455


Experiment Folder Server Client Attacker

Auth. authentication server_auth client_auth client_attacker
ACL authorization/attack_demo server_acl client_acl N/A
Mon.-BW monitoring/bw_exhaustion victim client client
Mon.-QP monitoring/qp_exhaustion victim N/A attacker
Log. logging/pythia_attack_demo server client client

Table 4: The folder and file names of end host programs for each experiment.

requests will get responses (printed on the client terminal).
Bedrock enables operators to deploy new ACL rules and block
RDMA requests violating the rules. If a request is blocked by
Bedrock, the client will show Completion status 12.

Monitoring—bandwidth exhaustion: The effectiveness of
the attack and defense is evaluated by the bandwidth usage
of traffic from each client (refer to our Github repository for
details). Results should be similar to Figure 6(b) in the main
paper where the attack starts at t=2.7s and Bedrock mitigates
the attack at t=5.4s.

Monitoring—QP exhaustion: In this experiment, attackers
try to consume as many QPs (queue pairs) as possible to
cause QP exhaustion. Without Bedrock, the attacker can keep
creating queue pairs on the server until the server cannot
allocate queue pairs anymore. With Bedrock, a single client
can only consume a predefined number of queue pairs. When
the attacker tries to ask for more, the IP address will be banned
and no further RDMA traffic will be allowed from that user.

Logging: We demonstrate the logging system in Bedrock by
detecting and mitigating the Pythia side-channel attack (see
more details in the main paper). Running the experiment will
output the accuracy of the attack both at the terminal and in
the output folder logging/pythia_attack_demo/output.
Without Bedrock, the accuracy can be as high as 95%, but
Bedrock will detect and mitigate the attack.


