
A Artifact Appendix

A.1 Abstract

The artefact consists of scripts for collecting several datasets
of live-defended VPN network traces using the QCSD frame-
work, simulating defended network traces, and performing
machine-learning evaluations, in addition to the source code
of the QCSD client library and test clients written in Rust
and the datasets collected during the evaluation. The artefact
requires at least 2 CPU cores and 4 GB of memory, however
additional cores help greatly to reduce run times, as does
access to GPUs. It requires python3.8, rust, and docker and
was tested on Ubuntu 20.04. The artefact generates the plots
present in the paper and allows running the machine-learning
evaluations on the datasets from the paper to compare the
resulting plots to those in the paper.

A.2 Artifact check-list (meta-information)
• Compilation: rustc >= 1.51, publicly available

• Data set: included

• Run-time environment: root access, Ubuntu 20.04, docker,
rust, python3.8, git/git-lfs

• Hardware: Wireguard VPN servers, GPU

• Run-time state: impacted by network throughput

• Execution: test → under 24 hours; full → data collection >
4 days with 3 VPN gateways and a 32 core server, machine-
learning evaluations several days on an RTX 3060

• Security, privacy, and ethical concerns: network scanning,
web-page crawling

• Metrics: recall, r-precision, Pearson’s correlation, LCSS

• Output: plots, tables, see paper for expected results

• Experiments: automated setup, snakemake workflow

• How much disk space required (approximately)?: 60 GiB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (ap-
proximately)?: test → under 24 hours, full → upwards of
6 days

• Publicly available (explicitly provide evolving version
reference)?: yes, https://github.com/jpcsmith/
qcsd-experiments/tree/v1.0.1

• Code licenses (if publicly available)?: MIT, Apache-2.0

• Data licenses (if publicly available)?: Creative Commons
Attribution 4.0 International

• Workflow frameworks used?: Snakemake

• Archived (explicitly provide DOI or stable reference)?:
10.3929/ethz-b-000565356

A.3 Description
A.3.1 How to access

The repository containing the scripts can be by cloned
from the GitHub repository https://github.com/jpcsmith/
qcsd-experiments.git, with tag v1.0.1 corresponding to the ver-
sion of this appendix. The dataset collected during the paper, along
with archived versions of the associated repositories and a virtual
machine with the software dependencies installed, can be found
under the DOI 10.3929/ethz-b-000565356.

A.3.2 Hardware dependencies

Below we describe the hardware dependencies based on the various
phases in the workflow.

Dataset collection The provided test configuration runs on a
server with 8 CPU cores and 8 GB of memory, and with a single
Wireguard VPN gateway running on the same host. The full collec-
tion utilised 3 VPN gateways (2 CPU cores and 2 GB memory is
more than sufficient for each) and 12 VPN clients per gateway (36
in total) running on a server with 32 cores and 188 GB of memory.
Each VPN client is is restricted to at most 2 CPU cores. Reduce the
number of clients per gateway to use less cores at the cost of longer
dataset collection times.

Machine learning (ML) evaluations The ML evaluations
associated with the test configuration can be run on 8 cores or less.
For the full configuration, at least 1 GPU is recommended such as
an RTX 3060 or better.

A.3.3 Software dependencies

The following software dependencies are assumed to be already
installed, and are installed in the provided VM:

• Ubuntu 20.04 and bash: All code was tested on a fresh instal-
lation of Ubuntu 20.04.

• git, git-lfs: Used to clone the code repository and install python
packages.

• Python 3.8 with virtual envs: Used to create a Python 3.8 virtual
environment to run the evaluation and collection scripts.

• docker >= 20.10: Used to isolate simultaneous runs of
browsers and collection scripts, as well as to enable multi-
ple Wireguard clients on a single host. The user must be able
to manage containers without using sudo.

• tcpdump >= 4.9.3: Used to capture traffic traces. Must be
configured to allow the non-root user to capture.

• rust (rustc, cargo) == 1.51: Used to compile the QCSD library
and test client library written in Rust.

• Others: Additionally, the following packages are required to
build the QCSD library and test client, and can be installed
with the ubuntu package manager, apt: build-essential
mercurial gyp ninja-build libz-dev clang tshark
texlive-xetex

Other software dependencies, such as ansible and Wireguard, are
installed automatically.

https://github.com/jpcsmith/qcsd-experiments/tree/v1.0.1
https://github.com/jpcsmith/qcsd-experiments/tree/v1.0.1
https://github.com/jpcsmith/qcsd-experiments.git
https://github.com/jpcsmith/qcsd-experiments.git


A.3.4 Data sets

The dataset from the collection performed in the paper has the DOI
10.3929/ethz-b-000565356 and can be downloaded and used as
a starting point for running the evaluations. To do so, replace the
results/ directory in the cloned repository with the results direc-
tory found in the gzipped tar archive.

A.3.5 Security, privacy, and ethical concerns

The evaluation downloads thousands of web page HTMLs and as-
sociated resources. The scripts in the workflow avoid overloading
servers by scheduling requests such that sequential requests to a
domain are either delayed or interleaved with requests to different
domains. Additionally, be aware of any regulations of your network
provider regarding performing automated web browsing.

A.4 Installation
If using the provided VM image, change to the home directory of the
vagrant user /home/vagrant/, otherwise change to the directory in
which you would like to install the artefact.

1. Clone the repository https://github.com/jpcsmith/
qcsd-experiments.git using git clone.

2. Change to the code directory and pull the additional resources
cd qcsd-experiments && git lfs pull.

3. If you want to use a specific version of the repository, change
to it now (e.g., git checkout v1.0.1).

4. Create a Python 3.8 virtual environment and activate it
python3.8 -m venv env && source env/bin/activate

5. Upgrade the python package manager (python -m pip
install -U pip wheel) and install required python
packages python -m pip install --no-cache-dir -r
requirements.txt.

Decide whether you want to run the experiments locally or dis-
tributed across multiple machines. The file ansible/distributed
contains an example of the configuration required for running with
remote VPN gateways and clients. The file ansible/local con-
tains the configuration for running the experiments locally, and is
used as an example for the following steps.

6. Set the gateway_ip variable in ansible/local to the non-
loopback IP address of the host, for example, the LAN IP
address.

7. Change the exp_path variable to a path on the (local) filesys-
tem. It can be the same path to which the repository was cloned.

8. Run the command ansible-playbook -i ansible/local
ansible/setup.yml to setup the docker image for creating
the web-page graphs with Chromium; create, start, and test
docker images for the Wireguard gateways and clients; and
download and build the QCSD library and test clients.

The QCSD source code is cloned on the remote host into the third-
party/ directory of the folder identified by the exp_path variable in
the hosts file (ansible/local or ansible/distributed).

A.5 Experiment workflow
Before running the workflow, it is necessary to ensure that the ap-
propriate environment variables are set. This can be done with
source env/bin/active to activate the python environment cre-
ated during installation, and source env_vars to set environment
variables for the project.

The results and plots in the paper were produced using snakemake.
Like GNU make, snakemake will run all dependent rules necessary
to build the final target. The general syntax is

snakemake -j --configfile=<filename> <rulename>
where <filename> can be config/test.yaml or
config/final.yaml and <rulename> is the name of one
of the snakemake rules found in workflow/rules/*.smk files or
the target filename. Table 1 lists the figures in the table and the rules
to produce them, whereas the following section describes the results
in the paper and the rule used to produce them. The listed output
files can be found in the results directory.

Generally, the various result workflows can be divided into the
phases: scan, collect, evaluate. In the first phase, scan, a python script
is used to scan domains from the Alexa Top list for QUIC support. In
the second phase, collect, Chromium browser instances are used to
download the domains and record their resource dependencies, and
then these dependency graphs are used to download live-defended
and undefended samples using the QCSD test clients. Finally in the
last phase, machine learning, overhead, or shaping evaluations are
performed and plots are created.

A.6 Evaluation and expected results
The main claims and associated results are described below,
along with the snakemake rules used to run them in paren-
theses. The snakemake rules can be tested with snakemake
-j --configfile=config/test.yaml <rulename>, where
<rulename> is given in parentheses below. The claims can be
evaluated fully using final.yaml instead of test.yaml.

• Claim. QCSD can successfully emulate website-fingerprinting
defences such as Tamaraw and FRONT.
Results. The Pearson correlation coefficient indicate medium
and strong correlations between simulated and live-defended
traces with QCSD at 50 ms sampling rates. LCSS scores in-
dicate long common sub-sequences at 5 ms sampling rates
(> 85%) (shaping_eval__all).

• Claim. QCSD adds small overheads to chaff-only defences
such as FRONT.
Results. Compared to the simulated FRONT defences,
the live-defended traces increase bandwidth overhead by
around 30% of the original trace length and latency
overhead by under 10% (overhead_eval__table and
overhead_eval_mconn__table).

• Claim. QCSD effectively defends single connections with
FRONT, but only mildly reduces classification performance
when defending with Tamaraw.
Results. In the single connection setting, the r20-precision-
recall curves for traces defended with FRONT match or surpass
the curves of the simulated FRONT defences, whereas for
the Tamaraw defence, the curves curves of the live-defended

https://github.com/jpcsmith/qcsd-experiments.git
https://github.com/jpcsmith/qcsd-experiments.git


Table 1: List of figures and snakemake rules to produce them. Use snakemake -j --configfile=<config> <rulename>
with the appropriate rule name to create the figure. Output file paths are relative to the results/ directory.

Section Figure Rule name Output file(s)

5. Shaping Case Studies:
FRONT & Tamaraw

Figure 3 shaping_eval__all plots/shaping-eval-front.png,
plots/shaping-eval-tamaraw.png

Table 2 overhead_eval__table tables/overhead-eval.tex
6.1. Defending Single Connec-
tions

Figure 4 ml_eval_conn__all plots/ml-eval-conn-tamaraw.png,
plots/ml-eval-conn-front.png

6.2. Defending Full Web-Page
Loads

Figure 5 ml_eval_mconn__all plots/ml-eval-mconn-tamaraw.png,
plots/ml-eval-mconn-front.png

Figure 6 ml_eval_brows__all plots/ml-eval-brows-front.png
E. Overhead in the Multi-
connection Setting

Table 3 overhead_eval_mconn__table tables/overhead-eval-mconn.tex

F. Server Compliance with Shap-
ing

Figure 8 See failure-analysis.ipynb plots/failure-rate.png

traces do not indicate significantly better performance than
undefended traces (ml_eval_conn__all).

• Claim. QCSD effectively defends multiple connections with
FRONT, but does not reduce classification performance when
defending with Tamaraw.
Results. In the single connection setting, the r20-precision-
recall curves for traces defended with FRONT match or sur-
pass the curves of the simulated FRONT defences, both when
considering multiple orchestrated connections based on de-
pendency graphs (ml_eval_mconn__all) and in the browser
setting (ml_eval_brows__all). When applying the Tamaraw
defence on multiple orchestrated connections, the precision-
recall curves are similar to the curves for the undefended
traces for 2 of the 3 evaluated classifiers (k-FP and VarCNN)
(ml_eval_mconn__all).

A.7 Experiment customization
The experiments can be customised by modifying the hosts
on which the experiments are to be run (e.g., ansible/local
and ansible/distributed) or changing experiment parameters
in the snakemake config files (e.g., config/test.yaml and
config/final.yaml).

A.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version


