
A Artifact Appendix

A.1 Abstract

Our artifact includes three major parts: hardware-free device
driver fuzzer, modified PANDA/QEMU with full-system con-
colic tracing support and concolic code exploration scripts.
The code require a 64-bit x86 system with clean Ubuntu 20.04
install.

A.2 Artifact check-list (meta-information)

• Compilation: It’s best to use the default Ubuntu 20.04 com-
pilers

• Run-time environment: Linux (preferably Ubuntu 20.04)

• Hardware: 64-bit x86 computer

• How much disk space required (approximately)?: 40G

• How much time is needed to prepare workflow (approxi-
mately)?: 30 min

• How much time is needed to complete experiments (approx-
imately)?: several hours to days depending on number of
drivers and duration of fuzzing session you want to run

• Publicly available (explicitly provide evolv-
ing version reference)?: https://github.
com/messlabnyu/DrifuzzProject/tree/
d0b9edfa364c2f9fe45d4b63c0ad9f62dca0bfc9

A.3 Description

A.3.1 How to access

Clone source from https://github.com/messlabnyu/DrifuzzProject/.
Or you can obtain our docker image from docker hub
https://hub.docker.com/repository/docker/buszk/drifuzz-docker.

A.3.2 Hardware dependencies

64-bit x86 machine.

A.3.3 Software dependencies

Ubuntu 20.04 for building from source. Any Linux distro should be
fine for running the Docker image.

A.4 Installation

git clone https://github.com/messlabnyu/⤦
DrifuzzProject.git

cd DrifuzzProject \&\& ./build.sh 2>\&1 |tee ⤦
build.log

A.5 Experiment workflow
In top-down perspective, our work invokes a golden seed search
script to generate quality initial seeds. Then, we can run the fuzzing
tool with the generated seed to increase coverage. Because our ini-
tial seed has solved many roadblocks, using it tends to find better
coverage tank starting with random seed (e.g. Agamotto’s approach).
To find the golden seeds, we leverage concolic execution and forced
execution to find and tackle roadblocks incrementally to increase
coverage.

A.6 Evaluation and expected results
Evaluation should show that Drifuzz is able to perform concolic trac-
ing in device driver execution and our golden seed search algorithm
is able to provide a good initial seed resulting more code coverage.

A.6.1 Prerequisite

After installation, please check if the following files are created
correctly. If any of the file was not created properly, please check
the build log and script to triage the problem.

cd ~/DrifuzzRepo/Drifuzz
ls image/buster.img
ls panda -build/x86_64 -softmmu/panda -system -⤦

x86_64
ls panda -build/x86_64 -softmmu/panda/plugins/⤦

panda_taint2.so
ls linux -module -build/vmlinux

A.6.2 Concolic Tracing

Note: USB targets are supported with “–usb” flag in ./snap-
shot_helper.py and ./concolic.py.

cd ~/DrifuzzRepo/drifuzz -concolic

Create a driver specific snapshot
./snapshot_helper.py ath9k
ls work/ath9k/ath9k.qcow2 # should exists

Run concolic script with random input
head -c 4096 /dev/urandom >rand
./concolic.py ath9k rand
cat work/ath9k/drifuzz_path_constraints # path ⤦

constraints
cat work/ath9k/drifuzz_index # accessed MMIO/DMA
ls work/ath9k/out # generated inputs with ⤦

flipped branch

Understand the concolic result
head work/ath9k/drifuzz_path_constraints
Get the program counter of the first symbolic ⤦

branch
head work/ath9k/drifuzz_path_constraints |grep ⤦

PC | awk ’{print $6}’
Use addr2line script to get stack trace
./addr2line.py ath9k [program counter]

A.6.3 Golden seed

Note: you may encounter a bug that consumes all available disk
space. In that case, run du tool to find and remove the files. If you

https://github.com/messlabnyu/DrifuzzProject/tree/d0b9edfa364c2f9fe45d4b63c0ad9f62dca0bfc9
https://github.com/messlabnyu/DrifuzzProject/tree/d0b9edfa364c2f9fe45d4b63c0ad9f62dca0bfc9
https://github.com/messlabnyu/DrifuzzProject/tree/d0b9edfa364c2f9fe45d4b63c0ad9f62dca0bfc9

use provided docker image, deleting the container and retrying a new
random seed might solve the problem.

Note: if you run into an AssertionError for “Cannot find a feasible
path for given model" for the first ./concolic.py run, it seems that
PANDA’s concolic tracing is not work. Please double check that you
have a snapshot in good standing and are able to run concolic tracing.
If that fails, changing a seed is reported to work in the situation.

Note: USB targets are supported with “–usb” flag in
./search_greedy.py.

cd ~/DrifuzzRepo/drifuzz -concolic
Run the golden seed script (takes a hour or so⤦

)
./search_greedy.py ath9k rand 2>&1|tee ⤦

search_ath9k.log
ls work/ath9k/out/0 # generated seed

Fields below can be derived from generated log to compare with
Table 2 from paper.

• #blocking branches = #iterations−1

• #symbolic branches = sizeo f (last branches list)

A.6.4 Fuzzing

cd ~/DrifuzzRepo/Drifuzz

Fuzz ath9k with random seed on 4 cores
fuzzer/drifuzz.py -D -p 4 seed/seed -random work/⤦

ath9k ath9k
Ctrl^C once to stop

Reproduce a generated input
scripts/reproduce.sh ath9k work/ath9k/ work/⤦

ath9k/corpus/payload_1

Process stacktrace when you see a crash
scripts/decode_stacktrace.sh crash.log

We also provide some helpful scripts to combine our golden seed
and concolic support with our fuzzer. Note: You need to run the
golden seed generation script before running some of the following
scripts.

cd ~/DrifuzzRepo/Drifuzz

Fuzzing random input without concolic support
scripts/run_random.sh ath9k
Fuzzing golden seed with concolic support
scripts/run_conc_model.sh ath9k

A.6.5 Coverage comparison

Get the coverage metric from the fuzzing sessions. The result should
show that the second session should have better coverage than the
first. The detailed number will differ because of time of fuzzing
period and non-determinism in fuzzing.

tail -n1 work/work -ath9k -random/evaluation/data.⤦
csv |awk -F’;’ ’{print $16}’

tail -n1 work/work -ath9k -conc -model/evaluation/⤦
data.csv |awk -F’;’ ’{print $16}’

A.7 Notes
Details of how to run each part of Drifuzz are shown in GitHub page.

A.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

https://github.com/messlabnyu/DrifuzzProject/blob/main/ARTIFACT.md

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Prerequisite
	Concolic Tracing
	Golden seed
	Fuzzing
	Coverage comparison

	Notes
	Version

