
A Artifact Appendix

A.1 Abstract
This artifact contains our reverse-engineering (RE) tools, the
covert and side-channel attacks, and the analytical model
described in the paper. The RE tools can be used to ex-
plore the mesh interconnect by testing various sender/receiver
placements. After RE, the covert and side-channel proof-of-
concepts can be run. All of our tools were tested on a bare-
metal machine with Ubuntu 18.04 and a 24-core Intel Xeon
Gold 5220R (Cascade Lake) processor. Other necessary soft-
ware dependencies are outlined for each component. The
artifacts should produce the graphs shown in the paper as well
as reproduce the attack performance.

A.2 Artifact check-list (meta-information)
• Compilation: GCC 7.5.0
• Run-time environment: These artifacts have been tested on

Ubuntu 18.04. The main software dependencies are GCC 7.5.0
and Python (≥ 3.6). Root access is needed to facilitate the
reverse-engineering process.

• Hardware: Intel Xeon Gold 5220R (Cascade Lake)
• Run-time state: The experiments are sensitive to the state of

the on-chip network. This means that cache activity (which
creates network traffic) can add noise to the experiments.

• Security, privacy, and ethical concerns: The experiments in
this artifact do not attempt to maliciously exploit any systems.

• How much disk space required (approximately)?: 4 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour
• How much time is needed to complete experiments (approx-

imately)?: 48 hours
• Publicly available (explicitly provide evolving version

reference)?: https://github.com/CSAIL-Arch-Sec/
dont-mesh-around

• Code licenses (if publicly available)?: MIT License
• Archived (explicitly provide DOI or stable refer-

ence)?: https://github.com/CSAIL-Arch-Sec/
dont-mesh-around/releases/tag/usenix2022

A.3 Description
A.3.1 How to access

The artifact can be downloaded by cloning our Github reposi-
tory.

A.3.2 Hardware dependencies

These artifacts target the Intel Xeon Gold 5220R (Cascade
Lake) processor. In particular, the processor must be an Intel
Skylake SP or Cascade Lake processor which use the mesh
interconnect. Evaluating the artifact should require less than
4 GB of disk space.

A.3.3 Software dependencies

These artifacts were tested on Ubuntu 18.04. The software
requires Python (≥ 3.6) and GCC 7.5.0.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

None of the experiments in the artifact attempt to maliciously
exploit any systems. However, they require access to a server-
class processor that is normally shared by many users and
will change some system configurations. Be sure to check
the original values of the configurations modified in the setup
script and restore them afterwards.

A.4 Installation
All installation instructions are included in the artifact. Users
should be comfortable using APT and Python/Pip to install
dependencies. Familiarity with Git is needed to clone the
repository. Additionally, some experiments are long-running
and should be run inside a tmux session. More specialized
experiments come with guidance on how to set them up.

A.5 Experiment workflow
Each experiment is contained in its own directory and is built
with its own Makefile. A README within each directory
contains detailed information on how to build and run the
experiment. It is recommended that the experiments be run in
the order presented.

A.6 Evaluation and expected results
Our paper makes the following claims:

1. We can reverse-engineer previously-unknown details
about Intel’s mesh interconnect.

2. The reverse-engineering results can inform the construc-
tion of covert and side-channel attacks.

3. The reverse-engineering results allow for the construc-
tion of an analytical model that accurately predicts
interconnect-based leakage.

4. The analytical model offer insights into mitigating
interconnect-based side channel attacks.

https://github.com/CSAIL-Arch-Sec/dont-mesh-around
https://github.com/CSAIL-Arch-Sec/dont-mesh-around
https://github.com/CSAIL-Arch-Sec/dont-mesh-around/releases/tag/usenix2022
https://github.com/CSAIL-Arch-Sec/dont-mesh-around/releases/tag/usenix2022
https://github.com/CSAIL-Arch-Sec/dont-mesh-around
https://github.com/CSAIL-Arch-Sec/dont-mesh-around


The key results of our paper are detailed below. Detailed
instructions on how to reproduce each key result are included
in the artifact.

A.6.1 NoC Reverse-Engineering

We reverse-engineered the lane-scheduling policy and priority
arbitration policies that dictate how traffic flows on the inter-
connect. These policies are not specified by Intel and have not
been publicly reverse-engineered prior to our paper but are
critical to understanding the precise conditions necessary to
generate contention. We verify these results by reproducing
the two case studies shown in the paper.

A.6.2 Covert Channel

In this section, we demonstrate a working covert channel
using only contention on the interconnect that can achieve a
capacity comparable to that of previous interconnect-based
covert channels (1.5 Mbps ± 0.3). Our artifact can reproduce
the latency trace and capacity plot shown in the paper.

A.6.3 Side Channel

Secret keys can be extracted from vulnerable ECDSA and
RSA implementations via the interconnect channel. Single-
bits can be classified with an accuracy of at least 69% and
71% respectively and full keys can be recovered with majority
voting.

A.6.4 Analytical Model

The reverse-engineering results can be used to construct an an-
alytical model of network contention that accurately predicts
observed results. The analytical model can be used to cre-
ate non-invasive mitigations that reduce the effectiveness of
our side-channel. These artifacts should be able to reproduce
Figures 12, 13, and 14 in the paper.

A.7 Experiment customization

Running the experiments in the artifact requires first reverse
engineering the layout of the tiles on the die, including where
the partially and fully disabled tiles are. Because the location
of these disabled tiles may differ between different units of
the same processor, this must be done before attempting to
run the experiments on a different machine. Guidelines for
how to do this reverse-engineering are described in Section 3
and Appendix B of the paper.

A.8 Notes

N/A

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	NoC Reverse-Engineering
	Covert Channel
	Side Channel
	Analytical Model

	Experiment customization
	Notes
	Version


