
D Artifact Appendix

D.1 Abstract
The artifact reproduces the reverse engineering experiments
outlined in §4 and §A with results summarized in Table 1 and
Table 2, the computation of optimized eviction sets presented
in §5, as well as the case studies discussed in §6. Specifi-
cally, we provide 3 code trees: TLB/ contains Linux kernel
modules used for reverse engineering TLB properties, along
with helper userspace programs; cache-ninja/ models set-
associative caches with replacement policies and computes op-
timized eviction sets; case-studies/ contains the case study
experiments. The hardware used for TLB is detailed in Table 1
and Table 2, whereas the case studies were developed for Intel
Kaby Lake processors. Finally, cache-ninja is architecture
independent and can run on any computer. All our source
code is available at https://github.com/vusec/tlbdr.

D.2 Artifact check-list (meta-information)
• Compilation: cache-ninja requires a rust compiler and

cargo version � 1.49. TLB and case-studies work with the
system gcc.

• Run-time environment: the kernel modules in TLB and
TLB/AMD are programmed against kernel versions 5.4 through
5.18. The kernel module in TLB/PCID assumes kernel version
5.4. Module insertion requires root access and a policy allow-
ing loading of unsigned modules.

• Hardware: case-studies require an Intel Kaby Lake i7-
7700 CPU with Hyperthreading enabled. Other Kaby Lake
CPUs might be usable with small tweaks. TLB runs on the
architectures shown in Table 1 and Table 2.

• Execution: The reverse engineering experiments under TLB
are best run on a quiescent system, or at the very least one
idle core. The experiments under case-studies are best run
pinned on idle cores, ideally enforced via e.g., cpusets.

• Output: Each piece of code produces bespoke output, usually
textual, representing its results. We describe this output in more
detail in the README file of each directory, and provide tools
to process this output.

• Experiments: The README file under each directory pro-
vides instructions on how to set up and run each experiment. A
convenience script and/or Makefile is also included.

• How much disk space required (approximately)?: a few
MiB for source and build.

• How much time is needed to prepare workflow (approx-
imately)?: a few minutes for each experiment, mostly for
setting up environment.

• How much time is needed to complete experiments (ap-
proximately)?: runtime usually depends on the number
of measurements taken, which can be adjusted; by default
the reverse engineering experiments in TLB and TLB/PCID
run within 2–3 minutes, the experiments under TLB/AMD
may take up to 30 minutes, cache-ninja runs within a

minute, case-studies/anc takes up to one hour, while
case-studies/pthammer and case-studies/tlbleed take
around 10 minutes each.

• Publicly available (explicitly provide evolving version ref-
erence)?: All the source code is available at https://
github.com/vusec/tlbdr.

• Code licenses (if publicly available)?: The kernel modules
under TLB and case-studies/pthammer/ptsim are licensed
GPLv2, the rest of the code is licensed under Apache 2.0.

• Archived (explicitly provide DOI or stable reference)?:
The sec22-ae-final git tag marks the tree with the artifacts
submitted for evaluation.

D.3 Description
D.3.1 How to access

All the source code is available at https://github.com/vusec/
tlbdr, under the tag sec22-ae-final.

D.3.2 Hardware dependencies

• TLB: The experiments in TLB and TLB/PCID were run on the
CPUs listed in Table 1, while the experiments under TLB/AMD
were run on the CPUs listed in Table 2.

• case-studies: The experiments make microarchitectural as-
sumptions that require an Intel Kaby Lake CPU and were run
on an i7-7700K, as described in more detail in §6. A different
model within the same family should also work, but might
require some manual parameter tuning.

D.3.3 Software dependencies

• TLB: Building the kernel module requires kernel headers and
system build tools. Running prepare.sh will install these
dependencies on Ubuntu systems.

• cache-ninja: Building and running require rust and cargo
version � 1.49; earlier versions may work, although not tested.

• case-studies: Building and running requires a C compiler
and, depending on the experiment, kernel headers and Python.

D.4 Installation
• TLB: Run make to build the kernel module and insmod
mmuctl/mmuctl.ko to insert the kernel module (as root). To
run the PCID or AMD experiments, navigate to the corresponding
subdirectory before running the commands.

• cache-ninja: Run cargo build [--debug|--release]
to compile the binary. Internet access might be required for
cargo to download dependencies.

• case-studies: Run make in each case study subdirectory to
build the experiment.



D.5 Experiment workflow
• TLB: Start with a freshly booted Linux system running on

bare metal and ensure the build dependencies are satisfied.
Run make test; this will build the experiment kernel module,
load the module and execute the trigger binary. If the kernel
module is already inserted it sufficies to run the trigger binary
directly. After the experiment run make unload to remove the
module from the kernel. To run the PCID or AMD experiments,
navigate to the corresponding subdirectory before running the
commands. Warning: these experiments run kernel code that
might crash/hang a core or otherwise leave the kernel in an
invalid state, we recommend you monitor the kernel log and
immediately reboot your system after any error.

• cache-ninja: Run cargo run to build and run the program,
which then computes and prints the optimized eviction sets
discussed in §5.

• case-studies: Execute make run in each directory to run
experiments with default settings. Consult the individual
README files under each directory for detailed instructions.

D.6 Evaluation and expected results
In this work we make several main claims: (i) We introduce TLB
desynchronization as a reliable primitive for TLB reverse engineer-
ing and validate it against previous work; (ii) We show how TLB
desynchronization, due to its precision and reliability, can be used
to reverse engineer previously undocumented TLB features; (iii)
We show how knowledge of one of these properties—replacement
policies—enable knowledgeable manipulation of TLB state, leading
to vastly more efficient adversarial evictions; and (iv) We show how
these more efficient adversarial evictions bring significant improve-
ments to various classes of attacks that make use of TLB eviction.

• TLB is the reverse engineering code using TLB desynchroniza-
tion which supports claims (i) and (ii).

• cache-ninja implements a model of TLB state along with the
replacement policies that we reverse engineered, and uses this
model to compute optimal adversarial eviction sets, validating
claim (iii).

• case-studies implements proofs-of-concept for integrating
the previously computed optimal eviction sets into several
existing attacks, in support of claim (iv).

We now describe the goal and expected output of each of our
experiments.

• TLB

– Goal: Measure TLB properties.

– Implementation: As described in §4 and §A.

– Results: On the relevant systems, we expect results in
line with Table 1 and Table 2.

• cache-ninja

– Goal: Produce optimal eviction sets for a Kaby Lake
TLB

– Implementation: As described in §5, using BFS to search
through the state graph.

– Results: We expect the optimized eviction sets as pre-
sented in §5.2, §5.3, and §6.2.

• case-studies/anc

– Goal: Measure and compare the speed of AnC attacks
using naive and optimized eviction sets.

– Implementation: As described in §6.1.

– Results: On relevant hardware we expect results compa-
rable to Figure 7.

• case-studies/pthammer

– Goal: Reproduce Figure 8 from raw data; optionally
produce a histogram of all data.

– Implementation: As described in §6.1.

– Results: We expect a faithful rendering of Figure 8. The
histogram should also show distinctly tri-modal output,
as described in §6.1.

• case-studies/pthammer/ptsim

– Goal: Simulate, measure and compare the potential ham-
mer rate of a PTHammer-like attack using naive and
optimized eviction sets.

– Implementation: As described in §6.1.

– Results: On relevant hardware we expect results similar
to those described in §6.1 and shown in Figure 8.

• case-studies/tlbleed

– Goal: Measure and compare the speed of TLBleed-style
attacks using naive or optimized eviction sets.

– Implementation: As described in §6.2.

– Results: On relevant hardware, we expect raw sample
rates in line with those shown in Table 5. Similarly, we
expect peak sustained covert channel bandwidth in line
with that described in §6.2.

D.7 Experiment customization
Customization and tweaking of experiments is possible to some
degree, consult the individual README files of each subdirectory
for more details.

D.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.


