
A Artifact Appendix

A.1 Abstract
E2SE is a system for securely storing private data in the
cloud with the help of a key server (an App server). Our
E2SE artifact is a prototype in Java including both the client
and key server implementation. The software requirements
includes JDK 81 or later, Maven 3.8.1 or later 2 and some
dependencies which could be automatically downloaded by
maven, and OpenSSL 1.1.13 with libssl-dev. To reproduce
the evaluation results, the hardware requirements include an
AWS EC2 t3.xlarge instance in Seoul for running the client,
an AWS EC2 t2.micro instance in Osaka for running the key
server, and a AWS S3 cloud server in Tokyo. We provide the
EC2 instances satisfying the software requirements and S3
cloud server access for the evaluation.

The key server could be run to provide assistance for secure
storage. Given a plain file, the client could run to securely
deposit the file to cloud storage and securely retrieve it later.
The client will output the time cost of each procedure. The
average statistic result should be consistent with the efficiency
part of our paper.

A.2 Artifact check-list (meta-information)
• Algorithm: OPRF, AES, KDF, SHA256

• Program: Siege4, an open-source benchmarking tool used to
test the performance of web server, is needed. The throughput
test of key server in our paper is done with Siege 4.0.4.

• Compilation: JDK 8 or later, Maven 3.8.1 or laer

• Run-time environment: ubuntu 18.04 TLS.

• Hardware: An AWS EC2 t3.xlarge instance, an AWS EC2
t2.micro instance, and AWS S3 server are needed.

• Run-time state: It is network sensitive as the client needs to
communicate with the key server and cloud server (AWS S3
in our implementation). Both the network delay between the
client and key server & cloud server will affect the time cost.
The client transfers the file to/from the cloud server, where the
network speed also affect the measured time cost.

• Execution: The running time depends on the the file size and
network delay and speed. In our experiment described in the
paper, the time cost of running the whole procedure 25 times
for each file varies from several minutes to one hour with the
file increasing from 10mb to 300mb.

• Metrics: Running the compiled jar package with calling the
key server, it provides service in port 20202 to help the client.
Running the compiled jar package with calling the client, the
execution time for each procedure is reported. Using Siege to
test the key server performance, the throughput is reported.

1https://www.oracle.com/java/technologies/javase/javase8-archive-
downloads.html

2https://maven.apache.org/download.cgi
3https://www.openssl.org/source/
4https://github.com/JoeDog/siege

• Output:

1. For the efficiency test, the outputs are the running time
of IBOPRF, Give, Take, optimized secure deposit and
retrieve, secure deposit and retrieve, plain deposit and re-
trieve. The statistically average of the outputs should be
consistent with the efficiency part of the paper, including
the Figure 8,9 and the Table 2.

2. For the key server throughput test. The output is the
throughput of key server, say the number of transactions
per second (trans/sec). When the key server is deployed
on devices with different processing cores and mem-
ory, the throughput increases almost linearly with the
processing core increasing.

• Experiments: The full preparation is described in
the README.md instruction of the open source code
https://github.com/yananli117/E2SE. We provide two well-
prepared EC2 instances. The reviewer could upload the code to
the instances, and follow the Run instruction and test instruc-
tion to get the results.

• How much disk space required (approximately)?: It de-
pends on the data size. We test the files from 10mb to 300mb,
so the required disk should be less than 1GB.

• How much time is needed to prepare workflow (approxi-
mately)?: Prepare from scratch, it probably costs 2 hours. We
provide a well-configured instances in EC2 to run, only cost
10 minutes.

• How much time is needed to complete experiments (ap-
proximately)?: Several minutes are needed to test whether
the artifact works. If redo all the experiments to produce the
data of the four figures and one table about efficiency and
scalability, approximately less than 6 hours are needed.

• Publicly available: . Github:
https://github.com/yananli117/E2SE.

• Code licenses: Our code is under MIT license.

• Archived (stable URL): https://github.com/yananli117
/E2SE/tree/bd4de7fb1c6c70df96bf89a17c100624fa665d0b

A.3 Description
A.3.1 How to access

We have open sourced our artifact at https://github.com/
yananli117/E2SE. To reproduce the performance evaluation results,
we provide the EC2 cloud instances with proper configurations and
credentials, etc. Since we do not know when the reviewers will
execute our code to repeat, to avoid keeping the cloud instances
running for a whole month (which is a bit unnecessary waste),
please inform us in the system before you plan to test. We will start
the well-configured EC2 instances and send you the corresponding
IP addresses.

A.3.2 Hardware dependencies

• To test the artifact is workable, two processes deployed in one
or two devices are needed for the key server and client.

https://github.com/yananli117/E2SE
https://github.com/yananli117/E2SE
https://github.com/yananli117/E2SE/tree/bd4de7fb1c6c70df96bf89a17c100624fa665d0b
https://github.com/yananli117/E2SE/tree/bd4de7fb1c6c70df96bf89a17c100624fa665d0b
https://github.com/yananli117/E2SE
https://github.com/yananli117/E2SE


• To reproduce the evaluation results, we provides two EC2
instances for running the client and key server. The client is
deployed in EC2 t3.xlarge instance in Soul, and the key server
is deployed in EC2 t2.micro instance in Osaka.

• AWS S3 as cloud storage server (During the artifact review,
we provide the access credential to access it). To apply to other
cloud services, the code should be tuned a bit for the different
cloud APIS.

A.3.3 Software dependencies

The software dependencies include JDK 8 or later version, Maven
3.8.1 or later versions, OpenSSL 1.1.1 and libssl-dev. (Some depen-
dencies could be automatically installed in the compilation using
Maven.) To test the throughput, the key server is implemented as a
web server, so Tomcat + nginx framework are needed for the key
server. The Siege tool in the test server is needed.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
When you plan to test the artifact, please do the following steps:

• Inform us to open the two instances and we will return the two
ip addresses of the two instances for your access.

• Download all the credentials of AWS S3 with the
link we provide only for artifact evaluation. For
other users, please login in your own AWS account
and get the security credential following the link
https://docs.aws.amazon.com/general/latest/gr/aws-sec-
cred-types.html.

• Open the terminal, securely and remotely control the EC2
t3.xlarge instance in Seoul via SSH for running the client

1 ssh −i CredentialPath / EC2_Client_Seoul . cer
ubuntu@ip_client

• Open another terminal, and securely and remotely control the
EC2 t2.micro instance in Osaka via SSH for running the key
server

1 ssh −i CredentialPath / EC2_keyServer_Seoul . cer
ubuntu@ip_client

• Clone the git repository and change to the root directory for
both the client and key server

1 gi t clone https : / / github .com/ yananli117 /E2SE. g i t
2 cd E2SE/ E2se4j

• Follow the instruction in README.md shown in
https://github.com/yananli117/E2SE to config, compile,
run and test our artifact and use our prototype for protecting
data.

A.5 Experiment workflow

A.6 Evaluation and expected results

In our paper, we have two main claims efficiency and scala-
bility.

A.6.1 Claim on efficiency

We do experiments to demonstrate that our design is efficient.
We mainly measure the time cost of each procedure during
the secure storage, including the register, give, take, deposit
and retrieve procedures. We also compare the time cost of
plain deposit/retrieve with the time cost of secure and opti-
mized secure deposit/retrieve to show that the overhead of
secure deposit/retrieve is very small, which could be seen in
Figure 8,9 and Table 2.

When running the client with a specified plain file, 25 users
run the whole procedure sequentially as follows: register to
the system, run the give protocol to share the data encryption
key (ibOPRF + give), encrypt the specified file and deposit
the ciphertext to S3 in an optimized way (secureDepOpt),
run the take protocol to reconstruct the data encryption key
(ibOPRF + take), retrieve the ciphertext and decrypt it in
an optimized way (secureRetOpt), encrypt the specified file
and deposit the ciphertext to S3 (secureDep = Enc + DCT),
retrieve the ciphertext and decrypt it (secureRet = RCT +
Dec ), deposit plain file to S3 (plainDep), retrieve plain file
from S3 (plainRet), encrypt a plain file (Enc) and Decrypt the
encrypted file (Dec).

We need to keep the key server running and run the client
8 times by specifying plain files of different sizes from 10mb
to 300mb shown in the paper. To produce a file with specific
size, we add the generation code in testGuide/ComFile1.java.
Please follow the RREADME.md instruction to generate the
file with a specific size.

With the output in the client terminal, we can calculate the
average time cost for each procedure and the breakdown to
form the Figure 8,9 and Table 2.

Since the time costs mainly comes from communication
between the client and two servers, they could vary depends
on the network delay between the deployed client to the de-
ployed key server and the specified S3 server. The network
speed could also affect the time cost especially when the size
of file is large. So we cannot give the range of time cost for
different network environments. We just claim that the test
results could be reproduced if the experiments are the same
as ours shown in the paper.

https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://github.com/yananli117/E2SE


A.6.2 Claim on scalability

. We claim that our key server is scalable. We observe that in
secure storage, the key server overhead mainly comes from
interacting with the client to run the IBOPRF, which could af-
fect the scalability. To demonstrate our key server is scalable,
we deploy the key server as a web server with nginx + tomcat
framework. We use Siege as the throughput benchmarking
tool to test how many IBOPRF requests the key server could
handle at per second. The client use Siege to sends 400 paral-
lel https requests on IBOPRF to the key server and iterates 250
times. The specific commands are shown in README.md.
only providing the IBOPRF service.

A.7 Experiment customization

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Claim on efficiency
	Claim on scalability

	Experiment customization
	Notes
	Version


