
A Artifact Appendix

A.1 Abstract
This artifact is to help users reproduce the results we reported
in our USENIX Security 2022 paper submission. We recom-
mend to run the artifact on a x86-64 computer with ≥ 20
CPU cores, ≥ 600GB of memory and ≥ 1.5T B hard drive
storage, and with an Ubuntu 20.04 LTS operating system.
The artifact should reproduce all the Figures and Tables we
reported in the paper, and thus can validate the main claims
of the paper. Detailed execution steps are elaborated in the
artifact README.md file.

A.2 Artifact check-list (meta-information)
• Algorithm: Coverage-based fuzzing, validity-oriented query

mutation and DBMS oracle.

• Program: SQLRight. The program source code is included in
the artifact.

• Compilation: afl-clang-fast and gcc-9/g++-9.

• Binary: Binaries not included. The programs are built from
source.

• Run-time environment: OS: Ubuntu 20.04 LTS. Dependen-
cies: python3 runtime and Docker. Requires Root access.

• Hardware: A x86-64 computer with ≥ 20 CPU cores, ≥
600GB of memory and ≥ 1.5T B hard drive storage. Hardware
specs are publicly available.

• Metrics: The reported metrics are: Number of Bugs Detected,
Fuzzing Coverage Feedback, Generated Query Validity and
Number of Valid Statements per Hour.

• Output: All the Figures and Tables in the paper.

• How much disk space required (approximately)?: Around
1.0T B (1012 bytes).

• How much time is needed to complete experiments (approx-
imately)?: Around 8834 CPU hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: Publicly available on Github.

• Code licenses (if publicly available)?: MIT License

• Archived (explicitly provide DOI or stable refer-
ence)?: Yes. Stable reference: https://github.com/
psu-security-universe/sqlright-artifact/tree/
57978e5ce697e13414a2bca871d2ef874e77158d

A.3 Description

A.3.1 How to access

The artifact can be retrieved from Github.
The Github link to the artifact is: https://github.com/

psu-security-universe/sqlright-artifact/tree/
57978e5ce697e13414a2bca871d2ef874e77158d.

A.3.2 Hardware dependencies

The artifact evaluations are run on a x86-64 computer, rec-
ommended with ≥ 20 CPU cores, ≥ 600GB of memory and
≥ 1.5T B hard drive storage.

A.3.3 Software dependencies

The artifact is evaluated on an Ubuntu 20.04 LTS operating
system.

A.3.4 Data sets

N/A.

A.3.5 Models

N/A.

A.3.6 Security, privacy, and ethical concerns

N/A.

A.4 Installation
To run the artifact code, user should download the artifact
files from the Github website (link provided from above). The
README.md file contains the detailed instructions to install
the Docker environment, and further build the Docker Images
required for the fuzzing tests.

A.5 Experiment workflow
The experiments are being hosted inside the Docker virtu-
alized environment. User only needs to call a few scripts
guided by the README.md file, and the scripts will run the
fuzzing evaluations in the background and later generate all
the Figures and the Tables we presented in the paper.

A.6 Evaluation and expected results
Here is the main claims of the paper:

• The proposed tool SQLRight can find more bugs than State-of-
the-arts SQLancer and Squirrel+oracle. SQLRight also outper-
forms existing tools in triggering more program code. This
claim can be validated by Figure 5 and Figure 8.

• The Coverage-based guidance helps SQLRight generate more
diverse queries and accumulate useful mutations, which helps
discover more bugs than the no-feedback baselines. This claim
can be validated by Figure 6 and Table 3.

• The validity-oriented optimizations in SQLRight can help gen-
erate higher validity queries, reduce false positives, and ulti-
mately help discover more bugs. This claim can be validated
by Figure 7, Figure 9 and Table 4.

https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d
https://github.com/psu-security-universe/sqlright-artifact/tree/57978e5ce697e13414a2bca871d2ef874e77158d


Following the instructions provided by the README.md
files in the artifact, one should be able to independently re-
produce all the results (Figures, Tables) shown in our paper.
Specifically:

• Session 3 in the README.md contains the instructions to
evaluate Comparison with Existing Tools (Section 5.2 in the
paper). It includes the steps to generate the figures from Figure
5 and Figure 8 in the paper. It consumes about 6152 CPU
hours.

• Session 4 in the README.md contains the instructions to
evaluate Contribution of Coverage Feedback (Section 5.3 in
the paper). It includes the steps to generate Figure 6 and Table
3 in the paper. It consumes about 726 CPU hours.

• Session 5 in the README.md contains the instructions to
evaluate Contribution of Validity (Section 5.4 in the paper). It
includes the steps to generate Figure 7, Figure 9 and Table 4
in the paper. It consumes about 1956 CPU hours.

The detailed command instructions are elaborated in the
README.md file. Here we show the expectations for each
artifact generated figures/tables:

• Figure 5a SQLite logical bugs: SQLRight should detect the
most bugs. On different evaluation around, we expect ≥ 3 bugs
being detected by SQLRight in 72 hours.

• Figure 5b MySQL logical bugs: The current bisecting and bug
filtering scripts could slightly over-estimate (or under-estimate)
the number of unique bugs for MySQL. Some manual efforts
might be needed to scan through the bug reports and dedupli-
cate the bugs to get the most accurate unique bug number. But
in general, SQLRight should report the most bugs after bisecting
(≥ 2 bugs in 72 hours).

• Figure 5c-e SQLite, MySQL and PostgreSQL code coverage:
SQLRight should have the highest code coverage among the
other baselines.

• Figure 5f SQLite query validity: SQLancer has the high-
est query validity, while SQLRight performs better than
Squirrel+oracle.

• Figure 5g MySQL query validity: sys has higher validity than
Squirrel+oracle.

• Figure 5h PostgreSQL query validity: SQLancer has the
highest query validity, while SQLRight performs better than
Squirrel+oracle.

• Figure 5i SQLRight valid statements per hour: SQLancer has the
highest number of valid statements per hour, while SQLRight

performs better than Squirrel+oracle.

• Figure 5j MySQL valid statements per hour: SQLRight has more
valid statements per hour than Squirrel+oracle.

• Figure 5k MySQL valid statements per hour: SQLancer have the
highest valid statements per hour, while SQLRight performs
better than Squirrel+oracle.

• Figure 6a-b bugs of SQLite (NoREC and TLP): SQLRight should
detect the most bugs. On different evaluation around, we expect
≥ 2 bugs being detected by SQLRight in 24 hours.

• Figure 6c-d coverage of SQLite (NoREC and TLP): SQLRight

should have the highest code coverage among the other base-
lines.

• Figure 7a SQLite logical bugs: SQLRight should detect the
most bugs. On different evaluation around, we expect ≥ 2 bugs
being detected by SQLRight in 24 hours. Additionally, we have
muted the SQLRight-deter config in the Artifact logical bugs
figure. Because sometimes SQLRight-deter could produce tens
of False Positives, which would destroy the plot region and
render the script outputs an unreadable plots.

• Figure 7b MySQL logical bugs: The current bisecting and bug
filtering scripts could slightly over or under-estimate the num-
ber of unique bugs for MySQL. Some manual efforts might
be needed to scan through the bug reports and deduplicate the
bugs to get the most accurate unique bug number. In general,
SQLRight should report the most bugs after bisecting. On dif-
ferent evaluation around, we expect ≥ 1 bugs from SQLRight

in 24 hours. Additionally, we have muted the SQLRight-deter
config in the Artifact logical bugs figure. Because sometimes
SQLRight-deter could produce tens of False Positives, which
would destroy the plot region and render the script outputs an
unreadable plots.

• Figure 7c-e SQLite code coverage: SQLRight and
SQLRight-deter should have the highest code coverage
among the other baselines. SQLRight-ctx-valid could have a
coverage very close to the SQLRight config, but in general,
SQLRight-ctx-valid is slightly worse in coverage compared to
SQLRight.

• Figure 7f-h SQLRight and SQLRight-deter should have the high-
est query validity.

• Figure 7i-k SQLRight and SQLRight-deter should have the high-
est number of valid statements per hour.

• Figure 8a SQLite logical bugs: SQLRight should detect the
most bugs. On different evaluation around, we expect ≥ 1 bugs
being detected by SQLRight in 72 hours.

• Figure 8b MySQL logical bugs: The current bisecting and bug
filtering scripts could slightly over-estimate (or under-estimate)
the number of unique bugs for MySQL. Some manual efforts
might be needed to scan through the bug reports and dedu-
plicate the bugs to get the most accurate unique bug number.
But in general, SQLRight should reported the most bugs after
bisecting (≥ 1 bugs in 72 hours).

• Figure 8c-8e SQLite, MySQL and PostgreSQL code coverage:
SQLRight should have the highest code coverage among the
other baselines.

• Figure 8f-h SQLite, MySQL and PostgreSQL query validity:
SQLancer has the highest query validity, while SQLRight per-
forms better than Squirrel+oracle.

• Figure 8i-k SQLite, MySQL and PostgreSQL valid statements per
hour: SQLancer has the highest number of valid statements per
hour, while SQLRight performs better than Squirrel+oracle.

• Figure 9a SQLite logical bugs: SQLRight should detect the
most bugs. On different evaluation around, we expect ≥ 2 bugs
being detected by SQLRight in 24 hours. Additionally, we have
muted the SQLRight-deter config in the Artifact logical bugs



figure. Because sometimes SQLRight-deter could produce tens
of False Positives, which would destroy the plot region and
render the script outputs an unreadable plots.

• Figure 9b MySQL logical bugs: The current bisecting and bug
filtering scripts could slightly over or under-estimate the num-
ber of unique bugs for MySQL. Some manual efforts might
be needed to scan through the bug reports and deduplicate the
bugs to get the most accurate unique bug number. In general,
SQLRight should detect the most bugs after bisecting. On dif-
ferent evaluation around, we expect ≥ 1 bugs being reported
by SQLRight in 24 hours. Additionally, we have muted the
SQLRight-deter config in the Artifact logical bugs figure. Be-
cause sometimes SQLRight-deter could produce tens of False
Positives, which would destroy the plot region and render the
script outputs an unreadable plots.

• Figure 9c-e SQLite, MySQL and PostgreSQL code coverage:
SQLRight and SQLRight-deter should have the highest code
coverage among the other baselines. SQLRight-ctx-valid could
have a coverage very close to SQLRight, but in general,
SQLRight-ctx-valid is slightly worse in coverage compared to
SQLRight.

• Figure 9f-h SQLite, MySQL and PostgreSQL query validity:
SQLRight and SQLRight-deter should have the highest query
validity.

• Figure 9i-h SQLite, MySQL and PostgreSQL valid statements
per hour: SQLRight and SQLRight-deter should have the highest
number of valid statements per hour.

• Table 3 Code coverage triggered by queries with different
depths: The mutation depth number could be slightly different

between each run. However, the Max Depth from SQLRight

NoREC and TLP should be larger than other baselines. And
SQLRight NoREC and TLP should have more queue seeds located
in a deeper depth, compared to other baselines.

• Table 4 False Positives from Non-Deter: We have introduced
some extra filters that can filter out some obvious False Posi-
tives. We includes these filters in the Artifact implementation,
in order to reduce the manual efforts for excluding FPs, and to
produce a more accurate bug numbers by default. Therefore,
the bug number reported by the current Artifact script could
be slightly different from the ones we reported in the paper
(Table 4). For all configurations, the WITHOUT non-deter
settings should always have less bugs reported compared to
the WITH non-deter settings, due to the extra False Positives
produced by the non-deterministic queries.

A.7 Experiment customization
N/A

A.8 Notes
N/A

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


