
A Artifact Appendix

A.1 Abstract
This paper presents Half-Double, a new Rowhammer effect
extending the reach of Rowhammer beyond the immediate
neighbors. We show that this effect can not only circumvent
current state-of-the-art mitigations like TRR, but defensive
refreshes to distance-1 rows also assist Half-Double. The
general idea is to induce flips into a victim by combining
many distance-2 accesses with a few distance-1 accesses.

In the artifact evaluation, we present experiments to under-
line the impact of Half-Double. Due to obligatory constraints,
we cannot share parts of the initial root-cause analysis. Nev-
ertheless, the artifacts presented show all the necessary steps
to mount the Half-Double Attack on commodity systems pro-
tected by TRR and ECC.

We split the artifacts into the described challenges, which
finally form the end-to-end exploit. First, the artifacts for
Challenge C1 “Memory Allocation” demonstrate three dif-
ferent ways to reconstruct contiguous memory. Second, for
Challenge C2 “Alternatives to Memory Templating”, we show
both ECC-aware hammering and Blind-Hammering and pro-
vide the utility to count the overall bitflips on a device. Third,
Challenge C3 “Memory Preparation” shows the Child Spray
technique to fill the memory with attackable data, i.e., page ta-
bles. Fourth, we provide the artifacts for C4 “Robust Bit-Flip
Verification”, namely the speculative oracle and the architec-
tural vfork alternative. Finally, the Half-Double Attack built
upon the previous parts to mount the end-to-end attack.

The end-to-end exploit is optimized for the chromeOS oper-
ating system and, more precisely, for our Chromebook setup.
Nevertheless, all the components are compileable for both
x86 and aarch64 architectures. We recommend ARM-v8 and
Intel x86 CPUs for this artifact evaluation.

A.2 Artifact check-list (meta-information)
• Program: We provide the programs and represent how

to install them.

• Compilation: We require gcc for cross-compilation.
Download instructions are provided.

• Run-time environment: We require a native Linux in-
stallation for compilation. Some artifacts can be directly
executed under Linux. For this purpose, we strongly rec-
ommend Ubuntu 20.04. For the end-to-end exploit, we
require a chromeOS installation. The provided installa-
tion instructions need internet access.

• Hardware: We require either Intel x86 CPUs or ARM-
v8 CPUs. Half-Double bitflips depend highly on the ac-
tual hardware and even differ between identical DRAM
modules.

• Execution: For executing some benchmarks, we require
a stable frequency.

• Security, privacy, and ethical concerns: Due to the
Half-Double bitflip effect, data corruption can occur
on the used system.

• Metrics: The benchmarks report nanosecond execution
time, data size in bytes, and throughput in mega- or giga-
bytes per second.

• Output: The artifacts print the results to the terminal.

• Experiments: We include the source code, build scripts,
and readmes describing the artifact and the process of
how to execute the benchmarks.

• How much disk space required (approximately)?:
Less than 1 GB.

• How much time is needed to prepare workflow (ap-
proximately)?: Below 4 hours.

• How much time is needed to complete experiments
(approximately)?: Up to two days, depending on the
hardware.

• Publicly available (explicitly provide evolving
version reference)?: https://github.com/iaik/
halfdouble

• Code licenses (if publicly available)?: MIT

• Archived (explicitly provide DOI or stable refer-
ence)?: https://github.com/iaik/halfdouble/
tree/ae

A.3 Description
A.3.1 How to access

Check out the Git repository from https://github.com/
iaik/halfdouble and follow the provided readmes.

A.3.2 Hardware dependencies

We recommend ARM-v8 CPUs with (LP)DDR4(x) DRAM
supporting both TRR and ECC, like the Chromebooks in the
paper. Most of the artifacts can also be executed on Intel x86
CPUs. Our experience showed that the susceptibility to Half-
Double is highly dependent on the used DRAM modules.

A.3.3 Software dependencies

We strongly recommend Ubuntu 20.04 as a platform for com-
pilation as we tested all the building steps there. The operating
system to execute the artifacts should either be an Ubuntu
or chromeOS operating system with root access for debug-
ging. The components of the paper have to be built from

https://github.com/iaik/halfdouble
https://github.com/iaik/halfdouble
https://github.com/iaik/halfdouble/tree/ae
https://github.com/iaik/halfdouble/tree/ae
https://github.com/iaik/halfdouble
https://github.com/iaik/halfdouble


the source. Hence the system requires tools for compiling
software (build-essentials on Ubuntu). Finally, access to
operating system interfaces as root is necessary for debugging,
e.g., /proc/self/pagemap and /dev/mem.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

During our experiments with Half-Double, we observed data
corruption in the operating system resulting in corrupted file
systems. Therefore, we highly recommend a fresh installa-
tion with an operating system image not used for personal
or important data. We never observed persistent damage on
the hardware. However, we cannot ensure this is generally
the case, but we find it highly unlikely to damage the used
hardware.

A.4 Installation
Follow the readmes in the repository’s top-level directory,
which will guide you through installing all the necessary tools
and components of the paper. The “Makefiles” should au-
tomate most of the process. However, we cannot rule out
that some parts might need manual adjusting, and therefore,
knowledge of C, C++, python3, bash, and Makefiles is benefi-
cial.

A.5 Experiment workflow
Each artifact contains a readme, the source code, and a build
script to build the source. After the binary is compiled, we
can reuse the build script to deploy the binary to the test
systems where the binary is executed. Note that some binaries
require additional arguments passed via the terminal. The
binary prints debug output to the terminal, and the results are
also reported in this way.

A.6 Evaluation and expected results
The evaluation is split into multiple parts. First, we use the pro-
vided Half-Double hammering tool to verify the results from
Table 1. The tool uses the Quad pattern to hammer and induce
flips on commodity devices, e.g., the provided Chromebooks.
The tool should report similar flip frequencies if performed
on the provided hardware. Second, we execute the artifacts of
Challenge C1 to verify the general functionality and the per-
formance numbers of Section 6.1 when detecting contiguous
memory. Third, for Challenge C2 we reuse the hammering

tool with a slightly different configuration to demonstrate both
Blind-Hammering and ECC-aware templating from Section
6.2. Fourth, Challenge C3 uses an executable to demonstrate
the Child spray of Section 6.3 to circumvent some ARM
CPUs’ reduced virtual address space and verify the perfor-
mance numbers. Finally, the artifacts of Challenge C4 scan
memory and test the bitflip verification of Section 6.4 if a
page table is corrupted.

A.7 Experiment customization
The artifacts use a timing side channel to find addresses be-
longing to the same DRAM bank. Therefore, the threshold of
the timing side channel is configurable and usually passed via
a command-line argument. We provide an additional utility to
evaluate this threshold empirically. Nevertheless, this thresh-
old might need manual adjustment. Finally, we can adjust
the number of repetitions of a benchmark and the performed
accesses in the hammer loop via compile-time parameters.

A.8 Notes
Rowhammer bitflips depend highly on the used DRAM, the
device’s battery state, and the environment. Similar to Ta-
ble 1, identical commodity systems can behave differently.
Therefore it is likely that results from the artifacts may differ.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


