
A Artifact Appendix

A.1 Abstract
This artifact includes software that covers all 3 basic func-
tionalities needed to reproduce the results of our paper "How
Long Do Vulnerabilities Live in the Code? A Large-Scale
Empirical Measurement Study on FOSS Vulnerability Life-
times". The three main functionalities are (a) data collection,
(b) heuristic execution (code analysis), and (c) experiments
(analysis incl. plots, tables, etc. that are presented in the pa-
per). The artifact shows that the process described in the
paper is reproducible and the results of executing the artifact
(tables, plots) should be similar to the results reported in the
paper (by executing the artifact now, new CVEs will be added
to the analysis so results are expected to differ slightly from
the ones reported in the paper).

The artifact is shipped as a docker image (the repository in-
cludes a Dockerfile that can be used to create the image). We
tested on Docker version 18.09.1 on Debian GNU/Linux 10.
Function (b) “heuristic execution” is CPU-intensive and par-
allelized, so we recommend using a machine with many CPU
cores to speed up the process. The docker container requires
~60GB of disk space, mainly to download the repositories of
the projects in the study. Although we tested the artifact on a

“big” 128-core machine, we expect it to run without problems
on “smaller” machines. We offered reviewer of the AE Com-
mittee of USENIX Security ’22 ssh access to the machine we
used for testing.

A.2 Artifact check-list (meta-information)
• Data set: The “ground-truth” dataset (CVE to VCC mappings)

is included as a set of files in the repository. The process to
create the main dataset is performed by the artifact.

• Run-time environment: The artifact is intended to be executed
in a docker container, so docker is required (which generally
also implies root privileges on the machine).

• Hardware: No specific hardware is required, although the
execution of the experiments can be accelerated with the use of
multiple CPU cores (heuristic execution) and good bandwidth
(cloning repositories). Since the execution can take long to
complete, a dedicated machine or server (with internet access )
is required.

• Output: The output consists of the tables and plots included
in the paper.

• Experiments: The artifact includes a “run_all.sh” bash script
that performs all the actions required. Alternatively the user
can run the commands in this script manually.

• How much disk space required (approximately)?: 60GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1-5 min.

• How much time is needed to complete experiments (approx-
imately)?: 10-80 hrs (mainly depending on number of cores
available and bandwidth)

• Publicly available (explicitly provide evolving ver-
sion reference)?: https://github.com/manuelbrack/
VulnerabilityLifetimes/tree/usenix_ae

• Code licenses (if publicly available)?: GPL-3.0

• Data licenses (if publicly available)?: CC BY 4.0

• Archived (explicitly provide DOI or stable ref-
erence)?: https://github.com/manuelbrack/
VulnerabilityLifetimes/tree/usenix_v1.0

A.3 Description

A.3.1 How to access

https://github.com/manuelbrack/
VulnerabilityLifetimes/tree/usenix_ae

A.3.2 Hardware dependencies

The process requires ~60GB of disk space. This is mainly
because the artifact looks into the repositories of some big
projects, such as chromium and Linux. More cores will mean
the artifact will run faster.

A.3.3 Software dependencies

Git to clone the repository and docker to build and run the
image.

A.3.4 Data sets

The required datasets are either included in the repository or
created by the artifact.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

Clone the repository1 and follow the instructions in the
readme2 to build and run the docker image (docker usually
implies that root access is required on the machine you are
using).

1git clone --branch usenix_v1.0 https://github.com/
manuelbrack/VulnerabilityLifetimes

2https://github.com/manuelbrack/VulnerabilityLifetimes/
blob/usenix_ae/README.md

https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_ae
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_ae
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_v1.0
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_v1.0
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_ae
https://github.com/manuelbrack/VulnerabilityLifetimes/tree/usenix_ae
https://github.com/manuelbrack/VulnerabilityLifetimes
https://github.com/manuelbrack/VulnerabilityLifetimes
https://github.com/manuelbrack/VulnerabilityLifetimes/blob/usenix_ae/README.md
https://github.com/manuelbrack/VulnerabilityLifetimes/blob/usenix_ae/README.md


A.5 Experiment workflow
The artifact implements the 3 main functionalities required
to reproduce the results of our paper: (a) dataset creation,
(b) heuristic execution, and (c) results analysis. All re-
quired steps are included in a “run_all.sh” bash script
with comments that explain the purpose of each step. At
the end we recommend that you copy the contents of the
“/project/VulnerabilityLifetimes/out/” directory3 to a machine
with a GUI so you can inspect the plots.

A.6 Evaluation and expected results
Note that this is a measurement paper and that the artifact also
implements the critical part of dataset creation. The ability of
this code to create an up-to-date dataset automatically is a key
contribution of this artifact. Given that the dataset collection
for the paper was executed some months before publication,
you should expect some variation of the results caused by new
data points. You can get exactly the same results as the ones
reported in the paper by importing the mappings from https:
//figshare.com/s/4dd1130c336f43f6e18c and running
the analysis scripts but there is no real reproduction value
there. The main claims of the paper can be summarized by
the following:

1. The heuristic provides good estimates for vulnerability
lifetimes

• Check the output of the /out/heuristic.csv file
for the content of Table 2 of the paper. Here you
should note that the numbers reported are similar;
especially, the numbers in the last 2 columns of the
file are smaller than the respective numbers of the
previous columns.

• Check the plots under ./out/year_trends/ye
ar_trend_linux_gt_comp.pdf, ./out/distri
butions/distribution_gtdata_gt.pdf, ./ou
t/distributions/distribution_gtdata_heu
ristic.pdf, as well as the qqplots in the same
directory. They should be similar to Figures 3 and
4, showing that the results of the heuristic are close
to the ground truth data.

2. Section 5.1: Look into ./out/lifetimes_table.csv
for results similar to the ones reported in Table 3. You
should be able to observe big differences between
projects and a higher average/mean value than median.
This table can also be used as a check to see if the exper-
iment has been executed successfully. If results in your
file are similar to the ones reported in the paper, then
you can be pretty sure that the experiment ran correctly.

3. Section 5.2: Look into the plots at
./out/distributions/distribution_All_pdf.pdf

3e.g. docker cp and then scp if you are connected to a server

and ./out/distributions/qq_plot.pdf. for similar
results to Figures 5 and 6. Here you should be able to
observe that the exponential distribution is a good fit to
the data.

4. Section 5.3: Inspect plots with the naming convention
./out/year_trends/year_trend_{project}.pdf
for similar results to Figure 7 (increasing trends except
for Firefox).

5. Section 5.4: Look into the plots at the directory ./out/r
egular_code_age/ for similar results to Figure 9. Here
you should be able to observe the correlation between
vulnerability lifetimes and code age and, especially for
Chromium, that lifetimes are increasing slower than code
age.

6. Section 5.6: Look at the plot at ./out/year_trends/y
ear_trend_kernel_mem_vs_others.pdf for similar
results to Figure 10. You should be able to note that the
trend is increasing both for memory vulnerabilities and
for other types.

Apart from the main results listed above, you can find many
more results (both presented in the paper and additional mate-
rial in the directories referenced above). Also, some results,
such as the statistical tests for vulnerability types are printed
in stdout. You can find these results in the log file of the
execution.

A.7 Experiment customization
The code is written in a way that new projects and data sources
can be added with relatively little additional effort (although
not trivially). See the readme in the main branch of the reposi-
tory for more information. However, the scripts for the artifact
evaluation do not support seamless addition of projects to an-
alyze. This could be a point for future work.

A.8 Notes
Warnings during the execution of the artifacts are not sup-
pressed and are to be expected. Here is a short explanation:

• ‘Cannot add or update a child row...‘: a fixing commit-
CVE mapping has been identified by text mining tech-
niques but the CVE is not in the list of CVEs that affect
the project as identified by cpe.

• ‘CVE search: 89it [00:14, 37.71it/s]...‘: The CVE entry
is not complete.

• ‘62f4f82ad39f177538f733b37cdd5dabd8f333de
could not be saved...‘: Commit message
includes a picture (emoji) – see https:
//github.com/chromium/chromium/commit/
62f4f82ad39f177538f733b37cdd5dabd8f333de.
This can be fixed in a future version of the tool.

https://figshare.com/s/4dd1130c336f43f6e18c
https://figshare.com/s/4dd1130c336f43f6e18c
https://github.com/chromium/chromium/commit/62f4f82ad39f177538f733b37cdd5dabd8f333de
https://github.com/chromium/chromium/commit/62f4f82ad39f177538f733b37cdd5dabd8f333de
https://github.com/chromium/chromium/commit/62f4f82ad39f177538f733b37cdd5dabd8f333de


• ‘warnings.warn("Commit not found 0".for-
mat(commitsha))‘: a fixing commit-CVE mapping
has been identified by text mining techniques but the
commit is not in the repository.

• ‘ValueWarning: omni_normtest‘: some projects have few
points and such warnings are natural.

• ‘UserWarning: no blames‘: No commits were blamed by
the heuristic for a given fixing commit, e.g. because it
changed only non C/C++ files.

• ‘WARNING:root:SKIPPED powernorm distribution
(taking more than 30 seconds)‘: Expected warning from
the fitter package (https://fitter.readthedocs.
io/en/latest/)

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


