
A Artifact Appendix

A.1 Abstract
This document demonstrates the artifact evaluation of LIGH-
TENCLAVE, which uses MPK to provide intra-enclave isola-
tion within SGX enclaves. We incorporate LIGHTENCLAVE
into two SGX libOSes (Graphene-SGX and Occlum) and
carry out evaluations to show the performance of Graphene-
SGX/Occlum with and without LIGHTENCLAVE. We provide
a remote machine as the SGX, PKU (MPK), and MPX CPU
features are needed. According to the specification, AE re-
viewers can firstly build the tested applications and libOSes,
and then carry out all experiments mentioned in paper. The
experiments will reproduce the results and generate figures
and tables in the paper.

We do not apply for the Available badge because one of the
founders currently does not allow to open source the work.

A.2 Artifact check-list (meta-information)
• Program: The libOSes used in the experiment are Occlum

(commit 0a06c898) and Graphene-SGX (commit 9c226c9a).
The applications and libraries used in the experiments are SGX-
OpenSSL (commit 5bacfaf), SGX-SQLite3 engine (v3.23.0),
Lighttpd (v1.4.40), GCC (v4.4.5), Fish shell (v3.0.0) and Busy-
Box (v.1.23.1)

• Hardware: An Intel x86 platform that supports Intel SGX,
PKU and MPX.

• Run-time environment: The experiment is carried out on
Linux. The kernel should set CR4.FSGSBASE = 1 to allow
userspace applications use wrfsbase and wrgsbase to modify
fs.base and gs.base. On newer versions of Linux (>= 5.9),
CR4.FSGSBASE = 1 is always set. The SGX SDK 2.4 and
SGX Driver 2.4 should be installed on the host. Docker is
used as the building environment. We also use the runtime
environment provided by Occlum and Graphene-SGX.

• Metrics: We use the applications’ throughput and execution
latency of operations to study LIGHTENCLAVE’s performance.

• Output: Some of the outputs are numerical results that can
be compared with tables in the paper. The other outputs are
figures that are available in the paper.

• Experiments: We provide scripts that reproduce the experi-
ment results and generate figures and tables in the paper.

• How much disk space required (approximately): Around
18G. We suggest different AE reviewers use different working
directories. Since the disk space of our remote machine is
limited, please remove the working directory once the artifact
evaluation completes (in case leading to out-of-disk for others).

• How much time is needed to prepare workflow (approxi-
mately): We provide a remote machine which is setted up for
artifact evaluation so that reviewers do not need to prepare the
workflow.

• How much time is needed to complete experiments (ap-
proximately): The building procedure is about 1 hour. The
complete evaluation takes about 3 hours.

A.3 Description
A.3.1 How to access

N/A

A.3.2 Hardware dependencies

The artifact evaluation requires an Intel x86 platform that supports
Intel SGX, PKU and MPX. Our remote machine has an Intel i7-
10700 IceLake CPU.

A.3.3 Software dependencies

Except for the environment mentioned in the checklist, LIGHTEN-
CLAVE requires the building system and toolchain from Occlum and
Graphene-SGX. To save the time for reviewers, we have prepared
the software dependencies for the artifact evaluation in the offered
machine.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
The installation procedure requires building the libOSes (Graphene
and Occlum with and without LIGHTENCLAVE) and the compilation
toolchain. After that, we compile the applications for the evaluation.
We provide a remote machine with software dependencies prepared,
where reviewers can start from the installation stage. Please check
Artifact access in the submission (on hotcrp) for detail.

After login into the machine, the home directory contains the
lightenclave-artifact directory that holds evaluation materials. Be-
fore starting the evaluation, please copy lightenclave-artifact to an-
other directory to avoid conflicts between different reviewers.

> sudo cp -r lightenclave -artifact your -
evaluation -directory

> cd your -evaluation -directory

We firstly build Occlum toolchain and applications running inside
Occlum. We use docker as the building environment.

> bash build_occlum_apps_in_docker.sh
Now inside the docker
Takes long time: about 45 minutes
> bash occlum/build_toolchain_and_app.sh
> exit

Then we build applications running inside Graphene using an-
other docker environment. This docker environment is used in the

following building and evaluation workflow, including building Oc-
clum and Graphene-SGX libraries and applications running without
libOSes (for Figure 8).

> bash reproduce_in_docker.sh
Now inside the docker
> bash graphene -sgx/build_app.sh
> bash occlum/build_libos.sh
> bash graphene -sgx/libos/build_libos.sh
> bash sdk-bench/prepare.sh

A.5 Experiment workflow
N/A

A.6 Evaluation and expected results
We claim that: 1. LIGHTENCLAVE is fast in terms of light-enclave
creation and communication. 2. LIGHTENCLAVE incurs low per-
formance overhead for intra-enclave isolation to applications. 3.
LIGHTENCLAVE improves the performance in real-world scenarios
in existing LibOSes.

For the 1st claim, Table 2 shows the task creation latency in SGX
libOSes. When incorporated with LIGHTENCLAVE, the application
creation time is shortened. The results can be reproduced by execut-
ing:

about 8 minutes
> ./scripts/table2.py

Then Figure 7 demonstrates that LIGHTENCLAVE can provide
fast enclave communication using shared memory between light-
enclaves. In contrast, the communication in Graphene is more time-
consuming due to data encryption. The figure can be reproduced by
executing:

Takes about 50 minutes
> ./scripts/figure7.py
> gnuplot -p ./plots/figure7.plt
The figures locate at plots/figure7a.eps

and plots/figure7b.eps

For the 2nd claim, we use LIGHTENCLAVE to isolate sensitive
code from third-party code for security. We compare it with Nested
Enclave, which uses an inner enclave to isolate third-party code.
Figure 8a isolates OpenSSL library from the application. Figure 8b
isolates SQLite3 library from a key-value store server. The figure
can be reproduced by executing:

Takes about 7 minutes
> ./scripts/figure8a.py
Takes about 3 minutes
> ./scripts/figure8b.py
> gnuplot -p ./plots/figure8a.plt
The figure locates at plots/figure8a.eps
> gnuplot -p ./plots/figure8b.plt
The figure locates at plots/figure8b.eps

For the 3rd claim, we apply LIGHTENCLAVE to Occlum and
Graphene and test real-world applications’ performance. The appli-
cations are Lighttpd, GCC, Fish Shell and some serverless functions.

We configure Lighttpd with two isolated workers and use
ApacheBench to get the throughput. LIGHTENCLAVE improves
performance in Occlum since there is no boundary checking. Figure
9 shows the results, which can be reproduced by executing:

Takes about 4 minutes
> ./scripts/figure9.py
> gnuplot -p ./plots/figure9.plt
The figure locates at plots/figure9.eps

The fast task creation in LIGHTENCLAVE benefits GCC, which
frequently forks processes for compilation. We isolate each GCC-
related processes (cc1, as, collect2 and ld) in the enclave. And we
compile five applications with various sizes of code bases. Figure
10 shows the results, which can be reproduced by executing:

Takes about 16 minutes
> ./scripts/figure10.py
> gnuplot -p ./plots/figure10.plt
The figures locate at plots/figure10a.eps

and plots/figure10b.eps

We then evaluate Fish Shell’s performance by invoking several
BusyBox commands (od, sort, grep, wc etc.) for text processing.
LIGHTENCLAVE improve the performance by creating tasks fast
(compared with Graphene) and avoiding SFI overhead (Compared
with Occlum). Table 3 shows the result, which is reproduced by:

Takes about 8 minutes
> ./scripts/table3.py

The fast task creation in LIGHTENCLAVE reduces initialization
overhead in FaaS scenarios. We evaluate four serverless functions’
execution latency to show the benefits. LIGHTENCLAVE is com-
pared with initializing a new enclave before execution (COLD) and
using an existing enclave for execution (WARM). In theory, LIGH-
TENCLAVE and WARM have similar execution latency while it
takes fewer resources. Figure 11 shows the results, which can be
reproduced by:

Takes about 40 minutes
> ./scripts/figure11.py
> gnuplot -p ./plots/figure11.plt
The figure locates at plots/figure11.eps

A.7 Experiment customization
N/A

A.8 Notes
If the experiments freeze (the execution time is far beyond the time
we offer), reviewers can kill the docker and restart the experiment.
Maybe the libOSes with the specified commits contain some un-
known issues.

Press Ctrl+C. Or use docker kill command
> exit
Re-enter the docker
> bash reproduce_in_docker.sh
e.g., ./scripts/figure10.py fails

> ./scripts/figure10.py

After the artifact evaluation, please remove the working directory
as it consumes large disk space.

> sudo rm -rf your -evaluation -directory

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

