
A Artifact Appendix

A.1 Abstract
This artifact provides binaries and OS scripts to evaluate a
Bluetooth over-the-air fuzzer under a PC (x86_64) running
Ubuntu 18.04. Due to its over-the-air approach and depen-
dency on Bluetooth target devices, access to a remote ma-
chine is provided via SSH with private key. Moreover, we
design six experiments to assist in replicating the main re-
sults of the paper by generating figures and terminal outputs
after the fuzzing campaign ends. The evaluation procedure
consists of OS scripts that are either included in the artifact
or described in this appendix. The results generated by our
experiments will help support the claims that (i) our fuzzer
outperforms other state-of-the-art over-the-air BT fuzzer, (ii)
that our internal fuzzing components are essential and add
to the effectiveness of the fuzzer and (iii) that our fuzzing
framework is extensible to other wireless protocols beyond
Bluetooth such as Wi-Fi and BLE. Lastly, the artifact also
includes exploits to launch against real wireless devices (BT,
Wi-Fi and BLE) attached to a remote machine.

A.2 Artifact check-list (meta-information)
Obligatory. Fill in whatever is applicable with some keywords
and remove unrelated items.

• Algorithm: Braktooth OTA Fuzzing

• Compilation: GCC version 7.5.0 for modules compilation,
fuzzer binaries provided in artifact, source code upon request.

• Binary: bt_fuzzer, wdmapper (included with artifact)

• Run-time environment: Ubuntu 18.04, Kernel 5.11.13

• Hardware: ESP-WROVER-KIT, ESP32-Ethernet-KIT, Oppo
Reno 5G, Raspberry 3B and x86_64 Computer

• Metrics: Execution Time, Model Coverage, Number of
Crashes, Number of Anomalies

• Output: Console, files (.txt, .csv) and graphs.

• Experiments: Os scripts and manual steps by the user.

• How much disk space required (approximately)?: 4 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 10 min.

• How much time is needed to complete experiments (ap-
proximately)?: 30 hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: https://doi.org/10.5281/zenodo.7023642

A.3 Description
The artifact showcases the capabilities of our systematic directed
fuzzing framework that automatically discover implementation bugs
in arbitrary Bluetooth Classic (BT) devices. We also showcase the
flexibility of our approach, which can be applied to other wireless
protocols such as Wi-Fi and BLE.

A.3.1 How to access

The access to the target Evaluation Machine can be done via SSH
after the reviewer sends his SSH public key to the researchers during
the artifact evaluation period.

Once access has been granted, the target Evaluation Machine can
be accessed via SSH using linux/macos as follows:

ssh artifact@evaluation.braktooth.com -p 2222

If the reviewer cannot share his/her public SSH public key, we
can send our SSH private key (artifact.key), which can be used to
access the Evaluation Machine as follows:

chmod 0600 artifact.key
ssh -i artifact.key artifact@evaluation.braktooth.com -p 2\

222

X11 forwarding is recommended to be enabled in the SSH client
to visualize pdf figures. Otherwise, figure files can be transferred via
SFTP.

To access the remote Evaluation Machine from windows, the
software MobaXterm can be used as it has X11 enabled by default.

A.3.2 Hardware dependencies

The following hardware development boards are required to evaluate
the fuzzer:

• ESP32-WROVER-KIT - Bluetooth Fuzzing Interface

• ESP32-Ethernet-KIT - Vulnerable Bluetooth/Wi-Fi Target

• Oppo Reno 5G - Vulnerable Bluetooth Target

• Raspberry 3B - Vulnerable Wi-Fi Target

All the listed hardware dependencies are connected to the remote
Evaluation Machine.

A.3.3 Software dependencies

The software dependencies for the fuzzer runtime is provided in the
artifact script requirements.sh. Such script is intended to be executed
under Ubuntu 18.04. However, the main runtime dependencies are
listed below:

• Wireshark 3.7.0 (Included with artifact)

• Python3 ≥ 3.6.9 (Included with artifact)

• Node.js v12.22.12

Furthermore, the vulnerable SDK (esp-idf commit 3de8b79) for
the vulnerable target (ESP32) must be installed in the host pc to flash
the vulnerable firmware to the target.

Lastly, for comparing our fuzzer with other BT OTA fuzzers, the
following 3rd party software is required:

• Bluetooth Stack Smasher v0.6

• BlueFuzz

• bfuzz (iotcube) v2.2.0

Note that the above BT fuzzers are installed via their respective
modules/eval/experimen3-*.sh scripts.

https://doi.org/10.5281/zenodo.7023642

A.3.4 Data Sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

To avoid causing unintended malfunctions to arbitrary Bluetooth
devices, the artifact must be only used against devices which are
strictly authorized by the device’s owner. Therefore, it is advisable to
only fuzz the wireless targets discussed in the experiment workflow.

Furthermore, our remote Evaluation Machine is configured to not
log any SSH connection to ensure privacy of the reviewer during the
artifact evaluation period.

A.4 Installation
The installation of the fuzzer can be done by running few scripts
provided in the artifact binary repository. Download and installation
of the fuzzer and software dependencies can be done as follows:

mkdir braktooth
cd braktooth
wget https://zenodo.org/record/7023642/files/release.zip
unzip release.zip
Install software requirements for Ubuntu 18.04
sudo apt install zstd
tar -I zstd -xf wdissector.tar.zst # Extract binary folder
cd wdissector
sudo ./requirements.sh
sudo ./requirements.sh doc # Ignore errors

Next, a vulnerable SDK version of our Bluetooth target (ESP32
esp-idf commit 3de8b79) needs to be installed. The following com-
mands can download and install the vulnerable SDK on the remote
machine:

git clone https://github.com/espressif/esp-idf
cd esp-idf
git checkout 3de8b79 # Vulnerable version of esp-idf SDK
./install.sh
cd ../

A.5 Experiment workflow
Figure 1 illustrates the relevant hardware setup in which the exper-
iments are performed on the remote Evaluation Machine. In the
following, we describe the experiment workflow which leverages
our hardware setup. Note that the fuzzer relies on the BT Fuzzing
Interface, which uses the same board model as our Target 1, but they
are separate boards as illustrated in Figure 1.

First, we aim to evaluate the Bluetooth fuzzer by running it against
Target 1: ESP32-WROVER. After the maximum number of fuzzing
iterations is reached, the fuzzer will stop and generate log files which
are used to analyze the results during the experiments via the python
scripts provided in the artifact folder modules/eval.

As illustrated in Figure 2 (a), the workflow is designed to first
evaluate the different variants of the fuzzer by changing its config-
uration parameters. After each variant is evaluated, the log folder

 Alpha AWUS036AC
(Wi-Fi Fuzzing Interface)

Remote PC
artifact@evaluation.braktooth.com:2222

Target 1: ESP32-WROVER-KIT

ESP32-WROVER-KIT
(BT Fuzzing Interface)

/dev/ttyUSB1

/dev/ttyUSB3 ADB

Target 2: Oppo Reno 5G

SSH

Target 3: Raspberry Pi 3B

wlan1

08:3a:f2:31:1c:b2 10.42.0.220

c0:2e:25:df:73:80

Other Targets
(Table 1 and 2)

Figure 1: Main Hardware Setup of Evaluation Machine

Flash Vulnerable
Target Firmware

Run Fuzzer for 1000
Iterations Evaluate Logs

Table 4

Table 5

Figure 14

all, mut, dup , evo

4 Times
(for each variant: all, mut, dup, evo)

eval.py

gen_plot.py

Flash Vulnerable
Target Firmware

Run Fuzzer for 1000
Iterations

Evaluate Logs &
Plot graphs Figure 15

1, 15, 30, 45, 60

5 Times
(for each model: 1, 15, 30, 45, 60)

gen_models_plot.py

b) Experiments for evaluating different state machine models

a) Experiments for evaluating fuzzing timing and model coverage

flash_esp32.sh

flash_esp32.sh
refs/*.json

sdf_rfcomm_query.json
State Machine Model

State Machine Model

Figure 2: Diagram of Experiments Workflow

Table 1: All BT Devices Setup of Evaluation Machine
BT SoC Vendor BT SoC Dev. Kit / Product BDAddress Monitor

Bluetooth 5.2

Intel AX200 PCIe Module 6C:6A:77:53:97:2D
SSH

artifact@127.0.0.1

Qualcomm WCN399X Oppo Reno 5G C0:2E:25:DF:73:80
ADB

627ff0eb
Bluetooth 5.1

Texas Instruments CC2564C CC256XCQFN-EM 98:5D:AD:12:03:F3
Serial

/dev/ttyACM0
Bluetooth 5.0

Cypress CYW20735B1 CYW920735Q60EVB-01 20:73:5B:1C:D9:93
Serial

/dev/ttyUSB6
Bluetrum Technology AB5301A AB32VG1 - -
Zhuhai Jieli Technology AC6925C XY-WRBT Module 48:1B:B2:26:90:36 N.A
Actions Technology ATS281X Xiaomi MDZ-36-DB - -
Bluetooth 4.2
Zhuhai Jieli Technology AC6905X BT Audio Receiver 1F:F6:F7:96:12:E3 N.A

Espressif Systems ESP32 ESP-WROVER-KIT 08:3A:F2:31:1C:B2
Serial

/dev/ttyUSB3
Bluetooth 4.1
Harman International JX25X JBL TUNE500BT - -
Bluetooth 4.0
Qualcomm CSR 8811 Laird DVK-BT900-SA - -

Beken BK3260N HC-05 98:DA:60:00:42:E3
Serial

/dev/ttyUSB10
Bluetooth 3.0 + HS

Silabs WT32i DKWT32I-A 00:07:80:CC:7D:E3
Serial

/dev/ttyUSB4

is fed to the script eval.py, which analyzes the packet trace file
(capture_bluetooth.pcapng) and events logs (events.*.txt) to return
timing, coverage and evaluation summary as depicted in Table 4
(Timing of 1000 fuzzing iterations for each device) and Table 5
(Evaluation summary w.r.t. different Rsel and DT) of the paper.

Furthermore, the target is re-flashed via Espressif esp-idf SDK
after each re-evaluation. This is to ensure a fresh state to the target in
case its flash memory is corrupted during the fuzzing process. Next,
after all the fuzzer variants are evaluated (mutation, duplication
evolution and all), a graph similar to Figure 14 (crashes/deadlocks
w.r.t ESP32 fuzzing iterations) is generated by running the script
gen_plot.py.

Next, in Figure 2 (b), we illustrate the experiments to evaluate the
state machine model of the fuzzer. Similar to the previous experi-
ment, the fuzzer is evaluated multiple times, but with different state
machine models. Then, the log results of each evaluation are ana-
lyzed by the python script gen_models_plot.py and a graph similar
to Figure 15 in the paper is generated (Evaluation of different state
machine models).

Further, Table 1, lists the BT devices attached to the Evaluation
Machine, which can be used to evaluate the bugs and timing behavior
depicted in Table 2 and Table 4 of the paper. The column BDAddress
lists the target Bluetooth Address for fuzzing or exploitation, whereas
column Monitor describes the monitor connection method with the
target such as Serial, SSH or ADB. Moreover, Table 1 corresponds to
Table 1 of the paper. However, four devices are currently not possible
to remotely evaluate due to the following reasons:

• Xiaomi MDZ-36-DB and JBL TUNE500BT - Both BT prod-
ucts (Speaker and headphone respectively) turn off automat-
ically when not receiving any BT connections and requires
manual interaction to turn them on before a fuzzing session.
Therefore, such devices are not possible to automate for the
artifact.

• Bluetrum AB5301A - Such board has been updated with the
latest proprietary firmware from vendor during the disclosure
period, however, we have no copies of the older vulnerable
firmware to ensure a proper evaluation with such device. We
have contacted the vendor to acquire the older firmware, but
we have not received a response so far.

• Laird DVK-BT900-SA - The board is non-functional due to
a short circuit in the evaluation board which prevent further
evaluation. Unfortunately, the DVK-BT900-SA development
kit is out of stock as of the time of writing.

Note that the Mic. Monitor from the paper is indicated as N.A (not
applicable) in Table 1 for devices XY-WRBT and BT Audio Receiver
since the Evaluation Machine laboratory is in a noisy environment
and outside our control. Therefore, the "Microphone" monitor is not
evaluated in the artifact.

Finally, Table 2 lists the Wi-Fi and BLE devices connected to the
Evaluation Machine. Column "Address" lists the BLE Address of
each device, whereas it is N.A for Wi-Fi devices since they connect
to the Wi-Fi AP fuzzer automatically. Such Table can be used to
replicating Table 7 of the paper (Summary of unknown flaws found
by extension).

Table 2: Wi-Fi / BLE Devices Setup of Evaluation Machine
Extension Target Address Monitor

BLE
Host

ESP32 08:3A:F2:31:1C:B2
Serial

/dev/ttyUSB3
Telink TLSR8258 A4:C1:38:D8:AD:A9 N.A

NXP KW41Z 00:60:37:88:16:0C
Serial

/dev/ttyACM2
TI CC2540 38:81:D7:3D:45:A2 N.A

Wi-Fi
AP

ESP32 N.A
Serial

/dev/ttyUSB7

ESP8266 N.A
Serial

/dev/ttyUSB9

Rasp. Pi 3 B N.A
SSH

pi@10.42.0.220

One Plus 5T N.A
ADB

3ffd4d9a

A.6 Evaluation and expected results
The results generated by our experiments will help support the claims
that (i) our fuzzer outperforms other state-of-the-art over-the-air BT
fuzzer, (ii) that our internal fuzzing components are essential and add
to the effectiveness of the fuzzer and (iii) that our fuzzing framework
is extensible to other wireless protocols beyond Bluetooth such as
Wi-Fi and BLE.

Evaluation Instructions:
We start by flashing a vulnerable firmware into the target esp32

which is connected to the remote machine. A code snipped of the
procedure is shown in Listing 1. For your convenience, such script
is included in modules/eval/flash_esp32.sh.

Listing 1: Flashing firmware to ESP32 target (flash_esp32.sh)
cd esp-idf
source export.sh
cd examples/bluetooth/bluedroid/classic_bt/bt_spp_acceptor
idf.py build
Program firmware to target (connected via /dev/ttyUSB3)
idf.py -p /dev/ttyUSB3 erase_flash flash

A.6.1 Experiment 1 - Evaluating Timing, Coverage and
Fuzzing Components

This experiment is intended to run the fuzzer in different configura-
tions to evaluate the components that contribute to the overall design
of the fuzzer. The script included on modules/eval/experiment1.sh
runs the fuzzer 4 times, switching between the fuzzing parameters
–mutation, –duplication, –optimization.

The script below can be used to run experiment 1 for a ESP32
target with BDAddress of 10:52:1c:69:ac:82.

cd $HOME/braktooth/wdissector/modules/eval
./experiment1.sh

When running the script above, the terminal output illustrated in
Figure 3 appears during the fuzzing session, indicating an exchange
of over-the-air LMP packets between the fuzzing interface and the
target ESP32 device. Furthermore, upon end of evaluation (which
takes several hours), extra logging folders and files are created as
illustrated in Figure 4.

Now, we can start to analyze the outputs generated and relate
to the tables and figures present in the paper. To start, we can get

Figure 3: Expected output when the BT fuzzer is running

wdissector
modules

eval
allLogs for Variant ’All’
mutLogs for Variant ’Mutation’
dupLogs for Variant ’Duplication’
evoLogs for Variant ’Evolution’
graph_models.pdf ..Figure 14 in the paper

Figure 4: Generated folder and files after running experi-
ment1.sh

the coverage and timing for the variant ’all’, which corresponds to
Table 4 in the paper, by running the following command in the eval
folder:

Listing 2: Generate results for Table 4 (Timing of 1000
fuzzing iterations for each device)
cd $HOME/braktooth/wdissector/modules/eval
./eval.py all

The output of Listing 2 should look similar to Figure 5, thus
returning relevant information that is present in Table 4 of the paper
such as Total Time, 1st Vulnerability, 1st Non-compliance and Model
Coverage (highlighted in blue). Although the time to complete 1000
iterations (Total Time) can variate, it is usually in the range of 3h-
3:30h for a BT target such as ESP32. Nevertheless, Model Coverage
for ESP32 has its value in the range 22−30% for this evaluation, as
exemplified in Figure 5. Moreover, due to the stochastic behavior
of the over-the-air fuzzing process, the 1st Vulnerability, 1st Non-
compliance can variate significantly. Depending on the iteration, the
first Vulnerability or Non-Compliance can be achieved in less than
1 minute in an optimistic scenario or after dozens of minutes, or
almost one hour in worst case.

This experiment to generate Table 4 mainly focuses on ESP32.
However, customization of the experiment for evaluation of other
BT targets is discussed in section A.7.1.

Next, the first entry of Table 5 of the paper (Evaluation summary
w.r.t. different Rsel and DT) is obtained by running the script of List-
ing 3 and getting the output of "Evaluation Summary" as illustrated
in Figure 6. Note that the python script eval.py receives "dup" as
argument, which refers to the Duplication fuzzing variant log folder,
which was generated after running experiment1.sh.

Listing 3: Generate tesults for Table 5 (Evaluation summary
w.r.t. different Rsel and DT)

Figure 5: Example output for Table 4 results (ESP32 target)

cd $HOME/braktooth/wdissector/modules/eval
./eval.py dup

Figure 6: Example output for an entry of Table 5

It is worthwhile to mention that the generated result for this ex-
periment is based on 1000 iterations instead of 200 iterations as
described on the paper to avoid running an additional evaluation.
Furthermore, since it requires a total of 9 evaluation to generate all
entries of Table 5 as shown in the paper, this experiment only focuses
on the first one to save time during this experiment. Nevertheless,
generating more entries or limiting the number of iteration can be
done by changing certain configuration parameters as later discussed
in the Experiment Customization (Section A.7.1).

Furthermore, the output obtained for Listing 3 shall indicate more
Crashes (C) than indicated on the paper due to the extended maxi-
mum number of iterations, which results in more time to find crashes.
On the other hand, the Average Transitions (Std. Dev.) should stay
relatively the same as indicated on Table 5 in the paper (107± 81
for entry Rsel = 0.1 and DT = 6000).

Lastly, we can generate a figure similar to the Figure 14 presented
in the paper (crashes/deadlocks w.r.t ESP32 fuzzing iterations), albeit
not for unique crashes/deadlocks, but rather for all reported crashes
from the fuzzer. This is because our framework cannot automatically
detect the root cause of each reported crash. Instead, the uniqueness
shown on Figure 14 in the paper, requires manual and careful analy-
sis of the target trace output. Automation of such effort to investigate
the root cause is beyond the scope of our fuzzing tool.

Nevertheless, a figure for crashes/deadlocks w.r.t ESP32 fuzzing
iterations is generated and opened by running the script below:

cd $HOME/braktooth/wdissector/modules/eval
./gen_plot.py
Graph saved to graph_optimization.pdf.pdf

In the case the figure failes to open to your view, you can manually
copy the figure locally via SFTP or call okular on the remote host
machine. The latter approach requires X11 enabled in your SSH
client:

okular graph_optimization.pdf

Figure 7 depicts a sample of the expected graph for this evaluation.

Figure 7: Sample graph for crashes/deadlocks w.r.t ESP32
fuzzing iterations.

A.6.2 Experiment 2 - Evaluating State Machine Model

As illustrated in the diagram of Figure 2 (b), this second experi-
ment focuses in evaluating the differences in coverage, number of
crashes and anomalies for different reference models used during
the Bluetooth fuzzing session. To this end, the script modules/eval/-
experiment2.sh has been prepared to automate the generation and
selection of the models before the evaluation starts. The relevant
files used for the model generation are depicted in Figure 8.

This experiment already provides such reference capture to sim-
plify the evaluation, however, Section A.7.2 details how to create
clean reference captures that can be used to create reference models.

After running the script of Listing 4, you should get (after several
hours) the terminal output depicted in Figure 9 and the evaluation
graph of all the reference models as illustrated in Figure 10.

Listing 4: Generate results for Figure 15 (Evaluation of dif-
ferent state machine models)
cd $HOME/braktooth/wdissector/modules/eval
./experiment2.sh
Graph saved to graph_models.pdf
okular graph_models.pdf

Figure 9 and Figure 10 relates to Figure 15 of the paper and
depicts the number of states, model coverage, number of crashes

wdissector
modules

eval
refs

1.pcapng1 min. Reference capture
15.pcapng ...15 min. Reference capture
30.pcapng ...30 min. Reference capture
45.pcapng ...45 min. Reference capture
60.pcapng ...60 min. Reference capture

Figure 8: Reference capture files used for reference model
generation.

Figure 9: Sample terminal output of evaluation of different
state machine models.

Figure 10: Sample graph of evaluation of different state ma-
chine models (graph_models.pdf).

and anomalies for each of the five reference models evaluated as
described in the paper ({Mi

re f | i ∈ {1,15,30,45,60}}).
Overall, the number of states should slightly increase according

to the model with the highest training time (M60
re f) while the cover-

age should decrease for such model. This is because with a more
complete reference model such as M60

re f , more states are to be ex-
plored during the 1000 fuzzing iterations, which translates to a lower
coverage as compared to a simpler reference model such as M1

re f .
Customization of this experiment on how to generate reference

captures from scratch is discussed in Section A.7.2.

A.6.3 Experiment 3 - State Mapping Generation

The artifact includes several reference capture files from protocols
beyond BT Classic to evaluate the state mapper. However, in order
to evaluate the state mapper, we can run the script of Listing 5 to
generate the complete state machine visualization of the simplified
graph presented in Figure 16 of the paper (An illustration of a sim-
plified BT state machine and corresponding state mapping rules for
LMP and L2CAP.). The state machine generation takes as input a
reference capture (capture_bt_a2dp.pcapng) and the configuration
file with the mapping rules (config_bt.json).

Figure 11 illustrates the generated state machine graph for the sam-
ple BT capture (capture_bt_a2dp.pcapng) and should correspond to
Figure 16 of the paper.

Listing 5: Run state mapper for sample capture files
(Figure 16 of the paper).

cd $HOME/braktooth/wdissector/examples/wdmapper/
This will generate states_bt_a2dp.svg
./run_example_wdmapper.sh
sudo npm install svg2pdf -g
svg2pdf states_bt_a2dp.svg # Convert svg to pdf
okular states_bt_a2dp.pdf # Open pdf

Figure 11: Simplified BT state machine and corre-
sponding state mapping rules for LMP and L2CAP
(states_bt_a2dp.svg).

A.6.4 Experiment 4 - Comparison between different
fuzzing tools

On this experiment, we evaluate other BT OTA fuzzer against our
ESP32 target and compare the results to Table 6 (A Comparison
among different fuzzing tools).

For this experiment, we don’t validate the entry toothpicker since
it requires a special hardware setup which is outside the scope of our
remote evaluation platform.

Nevertheless, the other third parties fuzzing tools (bfuzz, Stack
Smasher and Bluefuzz) are installed and executed by running the
following scripts:

cd $HOME/braktooth/wdissector/modules/eval
./experiment3_bss.sh # Stack Smasher
./experiment3_bfuzz.sh # bfuzz (iotcube)
./experiment3_bluefuzz.sh # Bluefuzz

While the first script (bss) does not require user interaction, the
other scripts (bfuzz and bluefuzz) require the user to select the Blue-
tooth device before starting the fuzzing session. To this end, once
such script are executed and a prompt asking for device number
is requested, the user needs to select the number for device name
"ESP_SPP_ACCEPTOR" and its respective BT service options as
illustrated in Figure 12 and Figure 13 for the fuzzers bfuzz and
Bluefuzz respectively.

It is worthwhile to mention that the scripts for this experimented
are not completely automated, so the evaluator would need to press
the keys CTRL + C to interrupt the fuzzing session after 3 hours for
each script.

For all scripts, once a crash has been triggered, the terminal out-
put should show the crash indication message for each fuzzer such
as "Crash detected". Nevertheless, if the target (ESP32) becomes
unresponsive during the session, the experiment script can be re-run
to reset the target firmware.

It is expected that only bfuzz (iotcube) is able to trigger a crash in
ESP32, however due to the random nature of the other fuzzers (bss,
Bluefuzz), receiving a crash during the 3 hours evaluation period is
still possible. However, we claim that our fuzzer outperforms the
state-of-the-art (at the time of writing the paper) by finding new

bugs and non-compliance in the LMP layer of ESP32.

Figure 12: bfuzz BT device options screen.

Figure 13: Bluefuzz BT device options screen.

Customization of this experiment on running the comparison
against other BT devices of Table 1 is discussed in Section A.7.3.

A.6.5 Experiment 5 - Attacks Exploiting BrakTooth

In this experiment, we reproduce certain BT attacks against ESP32
as reported in the paper. We also provide an example of launching
an attack against Oppo Reno 5G via the SSH monitor included in the
fuzzer. Note that in this experiment we use Oppo Reno 5G instead
of Pocophone F1 as used in the paper due to unavailability of our
Pocophone F1 during the evaluation artifact period. Nevertheless
Oppo Reno 5G uses the same BT SoC (WCN399X) as Pocophone
F1 and therefore is vulnerable to the same BT attacks.

Before launching the attack, we need to know the BDAddress of
the target BT device. To facilitate this, BT Exploiter can scan the
BDAddress of targets nearby by running the following command:

sudo bin/bt_fuzzer --scan

If ESP32 is detected, then you should get a similar output as
shown in Figure 14.

Figure 14: BT Scan output

Next, we can choose an exploit by its name and use the target
BDAddress. For this example, evaluation, we start by launching the
remote code execution attack against ESP32 as described in the
paper (CVE-2021-28138) by running the following command:

sudo bin/bt_fuzzer --no-gui --exploit=\
invalid_feature_page_execution

--target=08:3a:f2:31:1c:b2 --target-port=/dev/ttyUSB3

If the attack is successful, the fuzzer output should log the crash
trace of the target ESP32 with a program counter (PC) set to
0xdeadbeee. Thus, indicating that we have control over the target’s
program counter.

Figure 15: Output of Arbitrary code execution on ESP32
(CVE-2021-28138)

Following page 13 of the paper (DoS in Laptops & Smartphones),
we can launch a denial-of-service attack against a smartphone (Oppo
Reno 5G) and monitor it via ADB. To this end, change the parameter
"MonitorType" to 3 in configs/bt_config.json (using nano or vim for
example) and run the fuzzer with the "invalid_timing_accuracy"
exploit.

sudo bin/bt_fuzzer --no-gui --exploit=\
invalid_timing_accuracy --target=c0:2e:25:df:73:80 \
--target-port=/dev/ttyUSB3

Run the command above for about 2 minutes and stop the fuzzer
with CTRL + C. Since the output of the phone via logcat is too
fast, we need to manually check the target log (logs/Bluetooth/moni-
tor.1.txt) to validate if a crash has been triggered on the SoC of the
target.

cd $HOME/braktooth/wdissector/logs/Bluetooth
cat monitor.1.txt | grep -i "SoC Crashed"

If the target BT firmware has crashed and the attack was suc-
cessful, the output of the command about should return the string
"Primary Reason for SoC Crash:SOC crashed"

Finally, the evaluator can optionally launch exploits to trigger the
bugs in Table 2 of the paper. This customization is elaborated in
Section A.7.4.

A.6.6 Experiment 6 - Fuzzing Extensions

This section evaluates the claim that our fuzzer is extensible to
other wireless protocols such as Wi-Fi and BLE Host by running
an exploit against ESP32 (BLE Host) and Raspberry Pi 3B (Wi-Fi).
We leave the replicability of the "coverage" of Table 7 (Summary of
unknown flaws found by extension) on the paper as optional since
demonstrating the exploits confirms the extensibility of the fuzzer.

BLE Host Fuzzer: Starting with the BLE host fuzzer, we need
to flash a BLE firmware to ESP32 with a slight modification to the
sample code "gatt_security_server":

nano $HOME/esp-idf/examples/bluetooth/bluedroid/ble/\
gatt_security_server/main/example_ble_sec_gatts_demo.\
c

Modify the following
- .own_addr_type = BLE_ADDR_TYPE_RANDOM,
+ .own_addr_type = BLE_ADDR_TYPE_PUBLIC,

- esp_ble_gap_config_local_privacy(true);
+ esp_ble_gap_config_local_privacy(false)

After modifying the source code as instructed above. You can
build and flash the new firmware to the ESP32 target:

$HOME/esp-idf/
source export.sh
cd $HOME/esp-idf/examples/bluetooth/bluedroid/ble/\

gatt_security_server/
idf.py build
idf.py -p /dev/ttyUSB3 flash_erase flash

Now, we can launch the "Null Dereference" exploit from the
fuzzer as follows:

sudo bin/bthost_exploiter --target=08:3a:f2:31:1c:b2 \
--exploit=esp32_bluedroid_pairing_crash

If the null pointer dereference attack (CVE-2022-26604) is suc-
cessful, you should the output indicated in Figure 16.

Figure 16: ESP32 Bluedroid Null Pointer dereference (CVE-
2022-26604)

Moreover, to run the BLE Host in normal mode (without any
exploits) and replicate Table 7, the fuzzer can be launched as follows:

sudo bin/bthost_exploiter --target=08:3a:f2:31:1c:b2 \
--mutation=true

--duplication=true --optimization=true --max-iterations=1\
000

cp logs/BTHost modules/eval/custom
cd modules/eval
./eval.py custom

The customization of this experiment to target other targets as
shown in Table 2 is discussed in A.7.5.

Wi-Fi AP Fuzzer:
Next, we repeat the exploitation experiment for the Wi-Fi AP

fuzzer by launching the Probe Resp. Deadlock (CVE-2022-26599)
against Raspberry Pi 3B. To launch such attack, we need to force the

Wi-Fi client (Raspberry Pi) to connect to our Wi-Fi AP by running
a script that ensures reconnection Wi-Fi reconnection. We provide
this Raspberry Pi script in our remote setup via SSH at 10.42.0.220:

Listing 6: Wi-Fi Client reconnection script
ssh pi@10.42.0.220 # No password needed
cd WiFiSuite/wifisuite/
sudo dmesg -C && sudo dmesg -w &
sudo python test.py

After the previous commands were issued in Raspbery Pi, it will
try to connect to an AP matching the name (SSID) "TEST_KRA".
Now, to start the Wi-FI AP fuzzer, start a new SSH terminal on the
remote machine and run the following:

Listing 7: Wi-Fi Client reconnection script
cd $HOME/braktooth/wdissector
sudo bin/wifi_ap --exploit=broadcom_bad_prob_rsp

After a couple of minutes (about 1-2 minutes), the attack is suc-
cessful if the Raspberry Pi SSH terminal shows the string "firmware
has halted or crashed" (c.f., Figure 17).

Figure 17: Raspberry Pi 3B Probe Response Deadlock (CVE-
2022-26599)

Similarly to BLE Host, you can optionally run the Wi-Fi AP
fuzzer in normal mode and replicate Table 7 as follows:

sudo bin/wifi_ap_fuzzer --mutation=true
--duplication=true --optimization=true --max-iterations=1\

000
cp logs/wifi_ap modules/eval/custom
cd modules/eval
./eval.py custom

The customization of this experiment to target other devices as
shown in Table 2 is discussed in A.7.5.

A.7 Experiment Customization
A.7.1 Experiment 1

To replicate all the results of Table 4 of the paper, you can launch
the BT fuzzer with the following arguments:

sudo bin/bt_fuzzer --no-gui --target=<BDAddress> \
--target-port=<Serialport> --duplication=true \
--mutation=true --optimization=true

cp logs/Bluetooth modules/eval/custom
cd modules/eval
./eval.py custom

The arguments –target and –target-port corresponds to the
columns BDAddress and Monitor of Table 1. Note that –target-
port is only used if the target is using the Serial monitor type. For
targets that use SSH or ADB, the file configs/bt_config.json need to
be updated as follows:

• SSH:
Update attribute "MonitorType":1
Update attribute "SSHUsername": "artifact"

• ADB:
Update attribute "MonitorType":3
For Oppo Reno 5G, update attribute "ADBDevice": "627ff0eb"
For OnePlus 5T, update attribute "ADBDevice": "3ffd4d9a"

After the changes above, you can start the fuzzer without argument
–target-port.

Next, to replicate all the results of Table 5 of the paper with the
correct number of Iterations and parameters (Rsel and DT), the con-
figuration file configs/bt_config.json can be changed as follows:
(i) "MaxIterations": 200
(ii) "DefaultDuplicationProbability": Rsel
(iii) "MaxDuplicationTime": DT

A.7.2 Experiment 2

To generate your own BT captures to be used in state machine model
generation (Experiment 2), you can disable the fuzzer components
and increase the global timeout as follows:
(i) "enable_duplication": false
(ii) "enable_mutation": false
(iii) "enable_optimization": false
(iv) "GlobalTimeout": 9999 Then you can start the fuzzer without
the argument –mutation, –duplication, –optimization. Example:

sudo bin/bt_fuzzer --no-gui --mutation=false
--duplication=false --optimization=false

Finally, after running the tool for a while, the reference wireshark
captures are saved to logs/Bluetooth/capture_bluetooth.pcapng

A.7.3 Experiment 4

To run the tools against other BT devices from Table 1, use their
respective BDAddress when starting each comparison script. For ex-
ample, you need to manually modify script experiment3_bss.sh:25 to
use the correct BDAddress of the target device. For the other compar-
ison scripts, you need to wait for the tools to scan the environment
before selecting the correct BDAddress of the target BT device.

A.7.4 Experiment 5

In order to launch exploits to trigger the bugs reported in Table 2
of the paper (Summary of unknown implementation bugs and other
anomalies found), we need the mapping between the Exploit Name

and the vulnerability name as reported in Table 2 of the paper. Ta-
ble 3 outlines the columns Attack Name, Exploit Name, CVE ID,
Affected SoC, etc to capture this mapping.

An exploit can be launched from the fuzzer with the following
arguments:

sudo bin/bt_fuzzer --no-gui --target=<BDAddress> \
--target-port=<Monitor>

--exploit=<Exploit Name>

Note that the <BDAddress>,<Monitor> corresponds to Table 1
and <Exploit Name> corresponds to the last column of Table 3.
Lastly, the argument –target-port=<Monitor> is optional and can be
configured for ADB and SSH targets as discussed in Section A.7.1.

You can also list all the available exploits names that are stored
in folder modules/exploits/bluetooth/*.cpp by running the following
command:

sudo bin/bt_fuzzer --no-gui --list-exploits

Exploit creation and modification is out of the scope of this ar-
tifact, but a tutorial material is included in the documentation file
exploit_modules_tutorial.pdf at the root folder of the artifact pack-
age.

A.7.5 Experiment 6

In order to evaluate the fuzzer against the BLE Targets of Table 2,
you can launch the BTHost fuzzer as follows:

sudo bin/bthost_fuzzer --target=<Address> --target-port=<\
Monitor> --duplication=true --mutation=true \
--optimization=true

The parameter Address is informed by Table 2 and devices in
which the column Monitor is "N.A" means that no monitor is ap-
plicable to such device. In this case, you can omit the argument
"–target-port" before launching the fuzzer.

Similarly to the BTHost fuzzer, you can launch the Wi-Fi fuzzer
as follows:

sudo bin/wifi_ap_fuzzer --target-port=<Monitor> \
--duplication=true --mutation=true --optimization=\
true

Note that since the Wi-Fi fuzzer is a rogue AP which waits a
connection from the target device, the column Address of Table 2 is
not applicable.

Similar to the monitor configuration procedure of Section A.7.1,
the argument –target-port is only used if the target is using the
Serial monitor type. For targets that use SSH or ADB, the file con-
figs/wifi_ap_config.json or bthost_config.json (depending on which
fuzzer you are running) need to be updated as follows:

• SSH:
Update attribute "MonitorType":1
For Raspberry Pi, update attribute "SSHUsername": "pi"
For Raspberry Pi, update attribute "SSHHostAddress":
"10.42.0.220"

• ADB:
Update attribute "MonitorType":3
For OnePlus 5T, update attribute "ADBDevice": "3ffd4d9a"

After the changes above, you can start the fuzzer without argument
–target-port.

Table 3: Summary of Exploits and Affected BT Devices
CVE ID Attack Name Affected Vendor(s) Affected SoC(s) or Product(s) Impact Exploit Name
CVE-2021-28139 Feature Page Execution Espressif Systems ESP32 (SoC) ACE / Deadlock invalid_feature_page_execution
CVE-2021-28136 Duplicated IOCAP Espressif Systems ESP32 (SoC) Crash (Reboot) duplicated_iocap
CVE-2021-28135 Feature Res. Flooding Espressif Systems ESP32 (SoC) Crash (Reboot) feature_response_flooding
CVE-2021-28138 Invalid Public Key Espressif Systems ESP32 (SoC) Crash (Reboot) wrong_encapsulated_payload
CVE-2021-28137 Feature Req. Ping-Pong Espressif Systems ESP32 (SoC) Crash (Reboot) feature_req_ping_pong
CVE-2021-28155 Feature Res. Flooding Harman International JBL TUNE500BT (Product) Crash (Shutdown) feature_response_flooding
CVE-2021-31609 LMP Auto Rate Overflow Silabs WT32i (SoC) Crash (Reboot) lmp_auto_rate_overflow
CVE-2021-34147 Invalid Timing Accuracy Infineon Technologies CYW20735B1 (SoC) Crash (Reboot) invalid_timing_accuracy
CVE-2021-34146 AU Rand. Flooding Infineon Technologies CYW20735B1 (SoC) Crash (Reboot) au_rand_flooding
CVE-2021-34145 LMP Invalid Max Slot Type Infineon Technologies CYW20735B1 (SoC) Crash (Reboot) invalid_max_slot
CVE-2021-34148 LMP Max Slot Overflow Infineon Technologies CYW20735B1 (SoC) Crash (Reboot) lmp_max_slot_overflow
CVE-2021-34149 AU Rand. Flooding Texas Instruments CC2564C (SoC) Deadlock au_rand_flooding
CVE-2021-31610 AU Rand. Flooding Bluetrum BT889X / AB5XX / AB5301A (SoCs) Crash (Reboot) au_rand_flooding
CVE-2021-34150 LMP Length Overflow over DM1 Bluetrum AB5301A (SoC) Deadlock (Paging disabled) lmp_overflow_dm1
CVE-2021-34143 AU Rand. Flooding Zhuhai Jieli Technology AC6366C (SoC) Deadlock au_rand_flooding
CVE-2021-34144 Truncated SCO Link Request Zhuhai Jieli Technology AC6366C (SoC) Deadlock truncated_sco_link_request
CVE-2021-31612 LMP Auto Rate Overflow Zhuhai Jieli Technology AC6905X (SoC) Deadlock lmp_auto_rate_overflow
CVE-2021-31613 Truncated LMP accepted Zhuhai Jieli Technology AC6905X / AC6925C (SoC) Crash (Reboot) truncated_lmp_accepted
CVE-2021-31611 Invalid Setup Complete Zhuhai Jieli Technology AC6905X / AC6925C (SoC) Deadlock invalid_setup_complete
CVE-2021-31787 Feature Res. Flooding Actions Technology ATS2815 / ATS2819 (SoC) Crash (Shutdown) feature_response_flooding
CVE-2021-31785 Repeated Host Connection Actions Technology ATS2815 / ATS2819 (SoC) Deadlock repeated_host_connection
CVE-2021-31786 Multiple Same Host Connection Actions Technology ATS2815 / ATS2819 (SoC) Deadlock (Shutdown) N.A (Specific BDAddress Configuration)
CVE-2021-33155 LMP Paging Scan Disable Intel Intel AX200 (SoC) Deadlock (Paging disabled) paging_scan_disable
CVE-2021-33139 Invalid Timing Accuracy Intel Intel AX200 (SoC) Crash (FW Reboot) invalid_timing_accuracy
CVE-2021-30348 Invalid Timing Accuracy Qualcomm Snapdragon 845 / 855 / Others (SoCs) Crash (FW Reboot) invalid_timing_accuracy
CVE-2021-35093 LMP Length Overflow over 2-DH1 Qualcomm CSR 8811 / CSR 8510 (SoCs) Deadlock / Crash lmp_overflow_2dh1
Pending LMP Invalid Transport Beken BK3266 Deadlock (Paging disabled) lmp_invalid_transport
CVE-2019-9506 Knob (Extra - For testing only) Many Many Entropy Reduction knob

A.8 Notes
In case that the BT target ESP32 hangs the fuzzing process and does
not seem to move forward, then you can reset ESP32 by running the
following command:

cd $HOME/braktooth/wdissector/modules/eval
./flash_esp32.sh

Due to IP requirements with our Keysight partners, the main
source code of the fuzzer is freely available only for academic re-
search purposes upon request to https://src.braktooth.com.
Students or Researchers with a valid university email, will receive
an automated invitation to our Gitlab repository. Nevertheless, the
source code of our ESP32 reverse engineering framework is available
to public at https://github.com/Matheus-Garbelini/esp32_
firmware_patching_framework.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

https://src.braktooth.com
https://github.com/Matheus-Garbelini/esp32_firmware_patching_framework
https://github.com/Matheus-Garbelini/esp32_firmware_patching_framework

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data Sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment 1 - Evaluating Timing, Coverage and Fuzzing Components
	Experiment 2 - Evaluating State Machine Model
	Experiment 3 - State Mapping Generation
	Experiment 4 - Comparison between different fuzzing tools
	Experiment 5 - Attacks Exploiting BrakTooth
	Experiment 6 - Fuzzing Extensions

	Experiment Customization
	Experiment 1
	Experiment 2
	Experiment 4
	Experiment 5
	Experiment 6

	Notes
	Version

