
A Artifact Appendix

A.1 Abstract

We demonstrate how targeted deanonymization attacks per-
formed via the CPU cache side channel can circumvent
browser-based defenses. The attack framework we show is
able to overcome the limitations of prior work, such as as-
sumptions on the existence of cross-site leaks. As a result
of this attack, the attacker is able to learn whether a specific
individual visits the attacker-controlled website – a potentially
serious privacy violation.

When a user visits the attacker-controlled website, the web-
site uses an iframe, popunder, or tabunder to request a resource
from a third-party website (i.e., the “leaky resource”). The re-
sponse to this request, as well as the cache activity it generates
in the user’s system, differs depending on the user state on the
third-party website. An attacker monitoring the CPU cache
side channel can analyze the cache patterns and learn whether
the leaky resource was loaded successfully in the browser
or not, and use this information to learn the identity of the
visiting user. The attack can be scaled to identify thousands
of users.

The artifact repository is hosted at GitHub and evaluations
are performed on Google Colab. The reviewers should run the
provided scripts on Google Colab. To support the feasibility of
the attacks and the defense proposed in the paper, the results
should be similar to Figure 5 and Table 1, 2 and 6 of the paper.

A.2 Artifact check-list (meta-information)
• Data set: dataset.zip

• Run-time environment: Google Colab

• How much disk space required (approximately)?: 200MB

• How much time is needed to complete experiments (approx-
imately)?: one hour

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/leakuidatorplusteam/artifacts.git com-
mit ID: 78bae165e0dbcdeb245b19a1f5b75a191de92fc3

A.3 Description
We submit for Artifacts Available, Artifacts Functional and Re-
sults Reproduced badges.

A.3.1 How to access

git clone git@github.com:
leakuidatorplusteam/artifacts.git

[1]

cd artifacts [2]

git checkout 78bae165e0dbcdeb245b19a1f5b75a191de92fc3 [3]

A.3.2 Hardware dependencies

To collect additional traces, one of the following systems are
required:

Dell Latitude - Intel Core i7 7820HQ [4]

Mac mini - Apple M1 8-Core [5]

MacBook Pro - Intel Core i7 3540M [6]

A.3.3 Software dependencies

To collect additional traces, one of the following systems are
required:

Windows 10 Pro 20H2 - Chrome 96.0 [7]

macOS Big Sur 11.4 - Chrome 96.0 [8]

macOS Catalina 10.15.7 - Safari 15.0 [9]

A.3.4 Data sets

dataset.zip file is available at the root directory of the artifacts repos-
itory hosted at GitHub.

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
Git software can be used to get local access to the repository. Re-
viewers need to have Google accounts to access Google Colab and
also to share resources privately.

A.5 Evaluation and expected results
Here we describe the step by step instructions of two phases of the
evaluation. In the first phase, we demonstrate how the dataset we
already collected can be used to train the classifiers and determine
the accuracy of attacks:

1. Open https://colab.research.google.com/

2. From your local copy of artifacts repository, upload
the USENIX_Artifact_Evaluation/cache_demo.ipynb file in
Google Colab and open it

3. On the left side of Google Colab interface, click on “Files”,
then “Upload to session storage”, and choose the dataset.zip
file from your local copy of the artifacts repository

4. From the menu on top of Google Colab interface, click on
“Runtime”, then “Run all”, and wait until it is finished

After finishing these 4 steps, the reported results are as follows:

• The code block with comment starting with "## [Single Target
Attacks]" shows the prediction accuracy on the dataset using
LR (logistic regression classifier), MSE (mean squared error),
and FastDTW (fast dynamic time warping). These results cor-
respond to the results reported on Table 1 and 6

• The code block with the comment starting with "## [Chrome
Android]" shows the results for experiments with Android
Chrome

• The code block with the comment starting with "## [Old De-
fense (Leakuidator)]" shows the results for experiments with
old defense prior to the modifications suggested in this paper

• The code block with the comment starting with "### [Multi
Target Attacks]" shows the results for experiments with multi
target attacks, reported in Table 2 of the paper

• The code block with the comment starting with "## [Average
and Attack Accuracy plots]" correspond to Figure 5 of the
paper.

In the second phase, we provide a step by step instruction to
demonstrate how the attack page collects the cache traces and uses
them for prediction. To run the attack from scratch, reviewers can
collect traces using one of three systems Win-Chrome, Mac-Intel-
Safari, or Mac-M1-Chrome detailed in Table 4 of the paper, using the
respective attack pages at USENIX_Artifact_Evaluation directory.
To customize the targeted deanonymization attack demo for a target
user of your choice, do the following:

1. Login to the attacker Youtube account (e.g., at-
tacker@gmail.com) at youtube.com

2. Upload two private videos of at least 1 second duration in the
attacker Youtube account

3. Write down the identifier of the private videos you created,
called [video_id_1] and [video_id_2]

4. Share [video_id_1] privately only with the targeted vic-
tim you’d like to track (e.g. victim@gmail.com) and
[video_id_2] privately only with another attacker account (e.g.
attacker_second_id@gmail.com)

5. Prepare the state dependent URL as follows:
"https://www.youtube.com/embed/[video_id_1]
?rel=0&autoplay=1&mute=1"

6. Prepare the URL for the non-target state as follows:
"https://www.youtube.com/embed/[video_id_2]
?rel=0&autoplay=1&mute=1"

7. Prepare two attack pages page_1.html and page_2.html and
change the "State-Dependent-URL" string in the source code
of the attack pages to these two URLs: page_1 points to the
URL at step 5 and page_2 points to the URL at step 6

8. Host the attack pages on a web server (either local or remote).
In particular, do not run the attack pages as local files (i.e., not
served by a web server)

9. Log out of the attacker’s youtube account, and login to the
victim’s youtube account

10. Open two tabs in the browser. The first tab points to page_1
resembling the target state, and the second tab points to page_2
resembling the non-target state. Record the traces first in the
target tab, then in the non-target tab, then again target tab,
then non-target tab, ..., and repeat this at least 100 times. (to
make the experiment easier, instead of manually performing
this experiment, customize and use the scripts at the "automa-
tion_scripts" folder)

11. Put the collected traces into the template.json file (100 target
traces and 100 non-target traces)

12. Open https://colab.research.google.com/

13. Upload the USENIX_Artifact_Evaluation/test.ipynb file to
Google Colab and open it

14. On the left side of Google Colab interface, click on “Files”,
then “Upload to session storage”, and choose the template.json
file that contains your collected traces

15. Set the sweep and interval parameters as suggested in the com-
ments

16. From the menu on top of Google Colab interface, click on
“Runtime”, then “Run all”, and wait until it is finished

After finishing these steps, an average plot is generated. It should
be somewhat similar to Figure 5 in the paper, demonstrating the
differences between the two states. Also, accuracy of the logistic
regression classifier is reported.

A.6 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version

