
A Artifact Appendix

A.1 Abstract
Our data set contains nearly 10K binaries which are compiled
by our toolchains to obtain the ground truth of binary disas-
sembly. The binaries vary from x86/x64, arm32/aarch64 to
mipsle32/mipsle64. To compare popular disassemblers with
different ground truths, we also include the result of binary
disassembly of popular disassemblers and ground truths in the
data set. To validate the result of the paper, we prepare scripts
to compare disassemblers with ground truth on major dis-
assembly tasks(instruction recovery, function detection, and
jump table reconstruction) and present the accuracy(precision
and recall) in the console.

The minimal disk space is about 100 GB. We have tested
it in Ubuntu18.04 and Ubuntu20.04. The software require-
ments are python3 and python3-pip.

A.2 Artifact check-list (meta-information)
• Data set: The data set contains 10K binaries and ground

truths of binary disassembly. We open sourced the data set in
https://doi.org/10.5281/zenodo.6566082. The approx-
imate size is 85GB.

• Run-time environment: Linux. We tested in Ubuntu 18.04
and Ubuntu 20.04.

• Metrics: The accuracy(precision and recall) or the number of
false positives and false negatives of disassemblers.

• Output: The output is shown in console. The result is numeri-
cal results. The expected result is shown in the paper.

• Experiments: We prepared bash scripts to automate the ex-
periments as possible.

• How much disk space required (approximately)?: 100GB.

• How much time is needed to prepare workflow (approxi-
mately)?: 1-2 hour(s).

• How much time is needed to complete experiments (approx-
imately)?: 9 hours.

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/junxzm1990/x86-sok/
tree/25656adbe14/artifact_eval

• Code licenses (if publicly available)?: MIT license.

• Data licenses (if publicly available)?: Creative Commons
Attribution 4.0 International.

• Archived (explicitly provide DOI or stable reference)?:
https://doi.org/10.5281/zenodo.6566082

A.3 Description
A.3.1 How to access

https://github.com/junxzm1990/x86-sok/tree/
25656adbe14/artifact_eval

A.3.2 Hardware dependencies

As we prepared large scale data set and result of binary disassembly
and ground truths, our artifact requires at least 100GB storage.

A.3.3 Software dependencies

python3, python3-pip, docker, qemu

A.3.4 Data sets

https://doi.org/10.5281/zenodo.6566082

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
• Download source code. https://github.com/junxzm1990/
x86-sok. After downloading the source code, please change
current directory to x86-sok/artifact_eval.

• Download data sets. (i) x86/x64 data sets are in
https://zenodo.org/record/6566082/files/x86_
dataset.tar.xz?download=1. The decompressed size is
56GB. (ii) arm32/aarch64 and mipsle32/mipsle64 data set
is in https://zenodo.org/record/6566082/files/arm_
mips_dataset.tar.gz?download=1. The decompressed
size is 35GB. To evaluate the result easily, please create a new
directory named table_7 and move the second data set into
it.

• Set up environment. Please refer to https://github.com/
junxzm1990/x86-sok/tree/25656adbe14/artifact_
eval#set-up-environment.

A.5 Evaluation and expected results
• Impacts on Training Accuracy. To show the impacts

on different ground truths for training accuracy, we evalu-
ate instruction recovery of XDA. We prepared trained mod-
els of XDA and test suite. The expected result is shown
in paper Table 3. The steps to reproduce the evaluation
are in https://github.com/junxzm1990/x86-sok/tree/
25656adbe14/artifact_eval#xda1h.

• Impacts on Tool Evaluation. We evaluated dyninst,
ZAFL, and IDA with different ground truths on x86/x64
testsuite. (i) The steps to reproduce the comparisons
between dyninst with different ground truths of
dyninst is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#performance-
of-dyninst-on-complex-constructs40mins and the
expected result is in paper Table 4. (ii) The steps to
reproduce the comparisions between ZAFL with different
ground truths is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#performance-

https://doi.org/10.5281/zenodo.6566082
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval
https://doi.org/10.5281/zenodo.6566082
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval
https://doi.org/10.5281/zenodo.6566082
https://github.com/junxzm1990/x86-sok
https://github.com/junxzm1990/x86-sok
https://zenodo.org/record/6566082/files/x86_dataset.tar.xz?download=1
https://zenodo.org/record/6566082/files/x86_dataset.tar.xz?download=1
https://zenodo.org/record/6566082/files/arm_mips_dataset.tar.gz?download=1
https://zenodo.org/record/6566082/files/arm_mips_dataset.tar.gz?download=1
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#set-up-environment
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#set-up-environment
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#set-up-environment
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#xda1h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#xda1h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-dyninst-on-complex-constructs40mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-dyninst-on-complex-constructs40mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-dyninst-on-complex-constructs40mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-zafl-on-instruction-recovery1h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-zafl-on-instruction-recovery1h


of-zafl-on-instruction-recovery1h and the expected
result is in paper Table 5. (iii) The steps to reproduce
the result of jump table recovery between IDA pro with
OracleGT is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#distribution-
of-precision-of-ida20mins and the expected result is in
paper Figure 2.

• Impacts on Tool Comparison. We compared popular disas-
semblers on instruction recovery on openssl. The steps of
reproduction is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#accuracy-
of-popular-disassemblers-on-recovering-
instructions20mins and the expected result is in
paper Figure 3.

• Impacts on improvements of OracleGT. To show the impacts
on improvements of OracleGT, we present the accuracy of
popular disassemblers on recovering jump tables from glibc.
The expected result is shown in paper Figure 5. The steps of re-
production are in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#accuracy-
of-popular-disassemblers-on-recovering-jump-
tables-from-glibc10mins.

• Evaluation of mainstream disassemblers on binaries with
different architectures. We present Figure 6 to show the recall
and precision of mainstream disassemblers on binaries with
different architectures. Note that the overall result in x86/x64
is nearly the same as the result presented in Sok [1], we skip
the reproduction on binaries in x86/x64. To reproduce the
result of arm32/aarch64 and mipsle32/mipsle64, we prepared
the tutorial in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#compare-
result-of-arm-and-mips-disassemblers-result-3h.
The expected result is shown in paper Table 7.

• OracleGT v.s. Compilation Metadata To reproduce the result,
the tutorial is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#oraclegt-vs-
compilation-metadata-20mins and the expected result is
in paper Table 6.

• Extendibility(Optional). We also provide an example to
show how to build a new test suite with our toolchains.
The tutorial is in https://github.com/junxzm1990/x86-
sok/tree/25656adbe14/artifact_eval#how-to-build-
new-testsuite.

A.6 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

References

[1] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Geor-
gios Portokalidis, Bing Mao, and Jun Xu. Sok: All you ever
wanted to know about x86/x64 binary disassembly but were
afraid to ask. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 833–851. IEEE, 2021.

https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#performance-of-zafl-on-instruction-recovery1h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#distribution-of-precision-of-ida20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#distribution-of-precision-of-ida20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#distribution-of-precision-of-ida20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-instructions20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-instructions20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-instructions20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-instructions20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-jump-tables-from-glibc10mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-jump-tables-from-glibc10mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-jump-tables-from-glibc10mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#accuracy-of-popular-disassemblers-on-recovering-jump-tables-from-glibc10mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#compare-result-of-arm-and-mips-disassemblers-result-3h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#compare-result-of-arm-and-mips-disassemblers-result-3h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#compare-result-of-arm-and-mips-disassemblers-result-3h
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#oraclegt-vs-compilation-metadata-20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#oraclegt-vs-compilation-metadata-20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#oraclegt-vs-compilation-metadata-20mins
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#how-to-build-new-testsuite
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#how-to-build-new-testsuite
https://github.com/junxzm1990/x86-sok/tree/25656adbe14/artifact_eval#how-to-build-new-testsuite

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Version


